

SCORING AND EVALUATING

SOFTWARE METHODS, PRACTICES, AND RESULTS

Version 3.0

November 16, 2008

Abstract

Software engineering and software project management are complex activities. Both
software development and software management have dozens of methodologies and
scores of tools available that are beneficial. In addition, there are quite a few methods
and practices that have been shown to be harmful, based on depositions and court
documents in litigation for software project failures.

In order to evaluate the effectiveness or harm of these numerous and disparate factors, a
simple scoring method has been developed. The scoring method runs from +10 for
maximum benefits to -10 for maximum harm.

The scoring method is based on quality and productivity improvements or losses
compared to a mid-point. The mid point is traditional waterfall development carried out
by projects at about level 1 on the Software Engineering Institute capability maturity
model (CMMI) using low-level programming languages. Methods and practices that
improve on this mid point are assigned positive scores, while methods and practices that
show declines are assigned negative scores.

The data for the scoring comes from observations among about 150 Fortune 500
companies, some 50 smaller companies, and 30 government organizations. Negative
scores also include data from 15 lawsuits. The scoring method does not have high
precision and the placement is somewhat subjective. However, the scoring method does
have the advantage of showing the range of impact of a great many variable factors. This
article is based on the author’s book Best Practices in Software Engineering now in
preparation for publication by McGraw Hill in 2009.

Capers Jones
President, Capers Jones & Associates LLC
CJonesiii@cs.com

COPYRIGHT © 2008 BY CAPERS JONES & ASSOCIATES LLC.
ALL RIGHTS RESERVED

 2

INTRODUCTION:
EVALUATING SOFTWARE METHODS, PRACTICES, AND RESULTS

Software development and software project management have dozens of methods,
hundreds of tools, and scores of practices. Many of these are beneficial, but many are
harmful too. There is a need to be able to evaluate and rank many different topics using a
consistent scale.

To deal with this situation a scoring method has been developed that allows disparate
topics to be ranked using a common scale. Methods, practices, and results are scored
using a scale that runs from +10 to -10 using the criteria shown in table 1.1.

Both the approximate impact on productivity and the approximate impact on quality are
included. The scoring method can be applied to specific ranges such as 1000 function
points or 10,000 function points. It can also be applied to specific types of software such
as Information Technology, Web application, commercial software, military software,
and several others.

Table	
 1.1	
 	
 Scoring	
 Ranges	
 for	
 Software	
 Methodologies	
 and	
 Practices	

	
 	
 	
 	
 	
 	

	
 Score	
 	
 Productivity	
 Quality	
 	

	
 	
 	
 Improvement	
 Improvement	
 	

	
 	
 	
 	
 	
 	

	
 10	
 	
 25%	
 35%	
 	

	
 9	
 	
 20%	
 30%	
 	

	
 8	
 	
 17%	
 25%	
 	

	
 7	
 	
 15%	
 20%	
 	

	
 6	
 	
 12%	
 17%	
 	

	
 5	
 	
 10%	
 15%	
 	

	
 4	
 	
 7%	
 10%	
 	

	
 3	
 	
 3%	
 5%	
 	

	
 2	
 	
 1%	
 2%	
 	

	
 1	
 	
 0%	
 0%	
 	

	
 0	
 	
 0%	
 0%	
 	

	
 -­‐1	
 	
 0%	
 0%	
 	

	
 -­‐2	
 	
 -­‐1%	
 -­‐2%	
 	

	
 -­‐3	
 	
 -­‐3%	
 -­‐5%	
 	

	
 -­‐4	
 	
 -­‐7%	
 -­‐10%	
 	

	
 -­‐5	
 	
 -­‐10%	
 -­‐15%	
 	

	
 -­‐6	
 	
 -­‐12%	
 -­‐17%	
 	

	
 -­‐7	
 	
 -­‐15%	
 -­‐20%	
 	

	
 -­‐8	
 	
 -­‐17%	
 -­‐25%	
 	

	
 -­‐9	
 	
 -­‐20%	
 -­‐30%	
 	

	
 -­‐10	
 	
 -­‐25%	
 -­‐35%	
 	

 3

The midpoint or “average” against which improvements are measured are traditional
application development methods such as “waterfall” development performed by
organizations that either don’t use the Software Engineering Institute’s capability
maturity model or are at level 1. Low-level programming languages are also assumed.
This fairly primitive combination remains more or less the most widely used
development method even in 2008.

One important topic needs to be understood. Quality needs to be improved faster and to a
higher level than productivity in order for productivity to improve at all. The reason for
this is that finding and fixing bugs is overall the most expensive activity in software
development. Quality leads and productivity follows. Attempts to improve productivity
without improving quality first are not effective.

For software engineering a serious historical problem has been that measurement
practices are so poor that quantified results are scarce. There are many claims for tools,
languages, and methodologies that assert each should be viewed as a “best practice.” But
empirical data on their actual effectiveness in terms of quality or productivity has been
scarce. Three points need to be considered.

The first point is that software applications vary by many orders of magnitude in size.
Methods that might be ranked as “best practices” for small programs of 1,000 function
points in size may not be equally effective for large systems of 100,000 function points in
size.

The second point is that software engineering is not a “one size fits all” kind of
occupation. There are many different forms of software such as embedded applications,
commercial software packages, information technology projects, games, military
applications, outsourced applications, open-source applications and several others. These
various kinds of software applications do not necessarily use the same languages, tools,
or development methods.

The third point is that tools, languages, and methods are not equally effective or
important for all activities. For example a powerful programming language such as
Objective C will obviously have beneficial effects on coding speed and code quality. But
which programming language is used has no effect on requirements creep, user
documentation, or project management. Therefore the phrase “best practice” also has to
identify which specific activities are improved. This is complicated because activities
include development, deployment, and post-deployment maintenance and enhancements.
Indeed, for large applications development can take up to five years, installation can take
up to one year, and usage can last as long as 25 years before the application is finally
retired. Over the course of more than 30 years there will be hundreds of activities.

The result of these various factors is that selecting a set of “best practices for software
engineering” is a fairly complicated undertaking. Each method, tool, or language needs
to be evaluated in terms of its effectiveness by size, by application type, and by activity.

 4

Overall Rankings of Methods, Practices, and Sociological Factors

In order to be considered a “best practice” a method or tool has to have some quantitative
proof that it actually provides value in terms of quality improvement, productivity
improvement, maintainability improvement, or some other tangible factors.

Looking at the situation from the other end, there are also methods, practices, and social
issues have demonstrated that they are harmful and should always be avoided. For the
most part the data on harmful factors comes from depositions and court documents in
litigation.

In between the “good” and “bad” ends of this spectrum are practices that might be termed
“neutral.” They are sometimes marginally helpful and sometimes not. But in neither
case do they seem to have much impact.

Although the author’s book, Best Practices in Software Engineering, will deal with
methods and practices by size and by type, it might be of interest to show the complete
range of factors ranked in descending order, with the ones having the widest and most
convincing proof of usefulness at the top of the list. Table 1.2 lists a total of 200
methodologies, practices, and social issues that have an impact on software applications
and projects.

The average scores shown in table 1.2 are actually based on six separate evaluations:

1. Small applications < 1000 function points
2. Medium applications between 1000 and 10,000 function points
3. Large applications > 10,000 function points
4. Information technology and web applications
5. Commercial, systems, and embedded applications
6. Government and military applications

The data for the scoring comes from observations among about 150 Fortune 500
companies, some 50 smaller companies, and 30 government organizations. Negative
scores also include data from 15 lawsuits. The scoring method does not have high
precision and the placement is somewhat subjective. However, the scoring method does
have the advantage of showing the range of impact of a great many variable factors. This
article is based on the author’s book Best Practices in Software Engineering now in
preparation for publication by McGraw Hill in 2009.

However the resulting spreadsheet is quite large and complex, so only the overall average
results are shown here:

 5

Table 1.2 Evaluation of Software Methods, Practices, and Results
 	
 	

 Methodology, Practice, Result Average	
 	

 	
 	

 Best Practices 	
 	

1 Reusability (> 85% zero-defect materials) 9.65	
 	

2 Defect potentials < 3.00 per function point 9.35	
 	

3 Defect removal efficiency > 95% 9.32	
 	

4 Personal Software Process (PSP) 9.25	
 	

5 Team Software Process (TSP) 9.18	
 	

6 Automated static analysis 9.17	
 	

7 Inspections (code) 9.15	
 	

8 Measurement of defect removal efficiency 9.08	
 	

9 Hybrid (CMM+TSP/PSP+others) 9.06	
 	

10 Reusable feature certification 9.00	
 	

11 Reusable feature change controls 9.00	
 	

12 Reusable feature recall method 9.00	
 	

13 Reusable feature warranties 9.00	
 	

14 Reusable source code (zero defect) 9.00	
 	

 	
 	

 Very Good Practices 	
 	

15 Early estimates of defect potentials 8.83	
 	

16 Object-oriented development (OO) 8.83	
 	

17 Automated security testing 8.58	
 	

18 Measurement of bad-fix injections 8.50	
 	

19 Reusable test cases (zero defects) 8.50	
 	

20 Formal security analysis 8.43	
 	

21 Agile development 8.41	
 	

22 Inspections (requirements) 8.40	
 	

23 Time boxing 8.38	
 	

24 Activity-based productivity measures 8.33	
 	

25 Reusable designs (scalable) 8.33	
 	

26 Formal risk management 8.27	
 	

27 Automated defect tracking tools 8.17	
 	

28 Measurement of defect origins 8.17	
 	

29 Benchmarks against industry data 8.15	
 	

30 Function point analysis (high-speed) 8.15	
 	

31 Formal progress reports (weekly) 8.06	
 	

32 Formal measurement programs 8.00	
 	

33 Reusable architecture (scalable) 8.00	
 	

34 Inspections (design) 7.94	
 	

35 Lean Six-Sigma 7.94	
 	

 6

36 Six-sigma for software 7.94	
 	

37 Automated cost estimating tools 7.92	
 	

38 Automated maintenance work benches 7.90	
 	

39 Formal cost tracking reports 7.89	
 	

40 Formal test plans 7.81	
 	

41 Automated unit testing 7.75	
 	

42 Automated sizing tools (function points) 7.73	
 	

43 Scrum session (daily) 7.70	
 	

44 Automated configuration control 7.69	
 	

45 Reusable requirements (scalable) 7.67	
 	

46 Automated project management tools 7.63	
 	

47 Formal requirements analysis 7.63	
 	

48 Data mining for business rule extraction 7.60	
 	

49 Function point analysis (pattern matches) 7.58	
 	

50 High-level languages (current) 7.53	
 	

51 Automated quality and risk prediction 7.53	
 	

52 Reusable tutorial materials 7.50	
 	

53 Function point analysis (IFPUG) 7.37	
 	

54 Measurement of requirements changes 7.37	
 	

55 Formal architecture for large applications 7.36	
 	

56 Best-practice analysis before start 7.33	
 	

57 Reusable feature catalog 7.33	
 	

58 Quality function deployment (QFD) 7.32	
 	

59 Specialists for key skills 7.29	
 	

60 Joint Application Design (JAD) 7.27	
 	

61 Automated test coverage analysis 7.23	
 	

62 Reestimating for requirements changes 7.17	
 	

63 Measurement of defect severity levels 7.13	
 	

64 Formal SQA team 7.10	
 	

65 Inspections (test materials) 7.04	
 	

66 Automated requirements analysis 7.00	
 	

67 DMAIC 7.00	
 	

68 Reusable construction plans 7.00	
 	

69 Reusable HELP information 7.00	
 	

70 Reusable test scripts 7.00	
 	

 	
 	

 Good Practices 	
 	

71 Rational Unified Process (RUP) 6.98	
 	

72 Automated deployment support 6.87	
 	

73 Automated cyclomatic complexity analysis 6.83	
 	

74 Forensic analysis of cancelled projects 6.83	
 	

75 Reusable reference manuals 6.83	
 	

76 Automated documentation tools 6.79	
 	

 7

77 Capability Maturity Model (CMMI Level 5) 6.79	
 	

78 Annual training (technical staff) 6.67	
 	

79 Metrics conversion (automated) 6.67	
 	

80 Change review boards 6.62	
 	

81 Formal Governance 6.58	
 	

82 Automated test library control 6.50	
 	

83 Formal scope management 6.50	
 	

84 Annual training (managers) 6.33	
 	

85 Dashboard-style status reports 6.33	
 	

86 Extreme programming (XP) 6.28	
 	

87 Service-Oriented Architecture (SOA) 6.26	
 	

88 Automated requirements tracing 6.25	
 	

89 Total Cost of Ownership (TCO) measures 6.18	
 	

90 Automated performance analysis 6.17	
 	

91 Baselines for process improvement 6.17	
 	

92 Use cases 6.17	
 	

93 Automated test case generation 6.00	
 	

94 User satisfaction surveys 6.00	
 	

95 Formal project office 5.88	
 	

96 Automated modeling/simulation 5.83	
 	

97 Certification (six sigma) 5.83	
 	

98 Outsourcing (maintenance => CMMI 3) 5.83	
 	

99 Capability Maturity Model (CMMI Level 4) 5.79	
 	

100 Certification (software quality assurance) 5.67	
 	

101 Outsourcing (development => CMM 3) 	
 5.67	
 	

102 Value analysis (intangible value) 5.67	
 	

103 Root-cause analysis 5.50	
 	

104 Total Cost of Learning (TOL) measures 5.50	
 	

105 Cost of quality (COQ) 5.42	
 	

106 Embedded users in team 5.33	
 	

107 Normal structured design 5.17	
 	

108 Capability Maturity Model (CMMI Level 3) 5.06	
 	

109 Earned-value measures 5.00	
 	

110 Unified Modeling Language (UML) 5.00	
 	

111 Value analysis (tangible value) 5.00	
 	

 	
 	

 Fair Practices 	
 	

112 Normal maintenance activities 4.54	
 	

113 Rapid application development (RAD) 4.54	
 	

114 Certification (function points) 4.50	
 	

115 Function point analysis (Finnish) 4.50	
 	

116 Function point analysis (Netherlands) 4.50	
 	

117 Partial code reviews 4.42	
 	

 8

118 Automated restructuring 4.33	
 	

119 Function point analysis (COSMIC) 4.33	
 	

120 Partial design reviews 4.33	
 	

121 Team Wiki communications 4.33	
 	

122 Function point analysis (unadjusted) 4.33	
 	

123 Function points (micro .001 to 10) 4.17	
 	

124 Automated daily progress reports 4.08	
 	

125 User stories 3.83	
 	

126 Outsourcing (offshore => CMM 3) 	
 3.67	
 	

127 Goal-question metrics 3.50	
 	

128 Certification (project managers) 3.33	
 	

129 Refactoring 3.33	
 	

130 Manual document production 3.17	
 	

131 Capability Maturity Model (CMMI Level 2) 3.00	
 	

132 Certification (test personnel) 2.83	
 	

133 Pair programming 2.83	
 	

134 Clean-room development 2.50	
 	

135 Formal design languages 2.50	
 	

136 ISO Quality standards 2.00	
 	

 	
 	

 Neutral Practices 	
 	

137 Function point analysis (backfiring) 1.83	
 	

138 Use Case points 1.67	
 	

139 Normal customer support 1.50	
 	

140 Partial governance (low risk projects) 1.00	
 	

141 Object-oriented metrics 0.33	
 	

142 Manual testing 0.17	
 	

143 Outsourcing (development < CMM 3) 	
 0.17	
 	

144 Story points 0.17	
 	

145 Low-level languages (current) 0.00	
 	

146 Outsourcing (maintenance < CMM 3) 	
 0.00	
 	

147 Waterfall development -­‐0.33	
 	

148 Manual change control -­‐0.50	
 	

149 Manual test library control -­‐0.50	
 	

150 Reusability (average quality materials) -­‐0.67	
 	

151 Capability Maturity Model (CMMI Level 1) -­‐1.50	
 	

152 Informal progress tracking -­‐1.50	
 	

153 Outsourcing (offshore < CMM 3) 	
 -­‐1.67	
 	

 	
 	
 	
 	
 	
 	

 Unsafe Practices 	
 	
 	
 	
 	

154 Inadequate test library control -­‐2.00	
 	

155 Generalists instead of specialists -­‐2.50	
 	

156 Manual cost estimating methods -­‐2.50	
 	

 9

157 Inadequate measurement of productivity -­‐2.67	
 	

158 Cost per defect metrics -­‐2.83	
 	

159 Inadequate customer support -­‐2.83	
 	

160 Friction between stakeholders and team -­‐3.50	
 	

161 Informal requirements gathering -­‐3.67	
 	

162 Lines of code metrics (logical LOC) -­‐4.00	
 	

163 Inadequate governance -­‐4.17	
 	

164 Lines of code metrics (physical LOC) -­‐4.50	
 	

165 Partial productivity measures (coding) -­‐4.50	
 	

166 Inadequate sizing -­‐4.67	
 	

167 High-level languages (obsolete) -­‐5.00	
 	

168 Inadequate communications among team -­‐5.33	
 	

169 Inadequate change control -­‐5.42	
 	

170 Inadequate value analysis -­‐5.50	
 	

 	
 	

 Worst Practices 	
 	

171 Friction/antagonism among team members -­‐6.00	
 	

172 Inadequate cost estimating methods -­‐6.04	
 	

173 Inadequate risk analysis -­‐6.17	
 	

174 Low-level languages (obsolete) -­‐6.25	
 	

175 Government mandates (short lead times) -­‐6.33	
 	

176 Inadequate testing -­‐6.38	
 	

177 Friction/antagonism among management -­‐6.50	
 	

178 Inadequate communications with stakeholders -­‐6.50	
 	

179 Inadequate measurement of quality -­‐6.50	
 	

180 Inadequate problem reports -­‐6.67	
 	

181 Error-prone modules in applications -­‐6.83	
 	

182 Friction/antagonism among stakeholders -­‐6.83	
 	

183 Failure to estimate requirements changes -­‐6.85	
 	

184 Inadequate defect tracking methods -­‐7.17	
 	

185 Rejection of estimates for business reasons -­‐7.33	
 	

186 Layoffs/loss of key personnel -­‐7.33	
 	

187 Inadequate inspections -­‐7.42	
 	

188 Inadequate security controls -­‐7.48	
 	

189 Excessive schedule pressure -­‐7.50	
 	

190 Inadequate progress tracking -­‐7.50	
 	

191 Litigation (non-compete violation) -­‐7.50	
 	

192 Inadequate cost tracking -­‐7.75	
 	

193 Litigation (breach of contract) -­‐8.00	
 	

194 Defect potentials > 6.00 per function point -­‐9.00	
 	

195 Reusability (high defect volumes) -­‐9.17	
 	

196 Defect removal efficiency < 85% -­‐9.18	
 	

197 Litigation (poor quality/damages) -­‐9.50	
 	

 1
0

198 Litigation (security flaw damages) -­‐9.50	
 	

199 Litigation (patent violation) -­‐10.00	
 	

200 Litigation (intellectual property theft) -­‐10.00	
 	

It should be realized that table 1.2 is a work in progress. Also, the value of table 1.2 is
not in the precision of the rankings, which are somewhat subjective, but in the ability of
the simple scoring method to show the overall sweep of many disparate topics using a
single scale.

Note that the set of factors included are a mixture. They include full development
methods such as Team Software Process (TSP), partial methods such as Quality Function
Deployment (QFD). They include specific practices such as “inspections” of various
kinds, and also social issues such as friction between stakeholders and developers. They
also include metrics such as “lines of code” which is ranked as a harmful factor because
this metric penalizes high-level languages and distorts both quality and productivity data.
What all these things they have in common is that they either improve or degrade quality
and productivity.

Since programming languages are also significant, it might be asked why specific
languages such as Java, Ruby, or Objective C are not included. This is because as of
2009 more than 700 programming languages exist, and new languages are being created
at a rate of about one every calendar month.

In addition, a majority of large software applications utilize several languages at the same
time, such as JAVA and HTML, or combinations that may top a dozen languages in the
same applications. There are too many languages and they change far too rapidly for an
evaluation to be useful for more than a few months of time. Therefore languages are
covered only in a general way: are they high-level or low-level, and are they current
languages or “dead” languages no longer in use for new development.

Unfortunately a single list of values averaged over three different size ranges and
multiple types of applications does not illustrate the complexity of best-practice analysis.
Shown below are examples of 30 best practices for small applications of 1000 function
points and for large systems of 10,000 function points. As can be seen, the two lists have
very different patterns of best practices.

The flexibility of the Agile methods are a good match for small applications, while the
rigor of Team Software Process (TSP) and Personal Software Process (PSP) are a good
match for the difficulties of large-system development.

 1
1

It is useful discuss polar opposites and both best practices and also show worst practices
too. The definition of a “worst practice” is a method or approach that has been proven to
cause harm to a significant number of projects that used it. The word “harm” means
either degradation of quality, reduction of productivity, or concealing the true status of
projects. In addition “harm” also includes data that is so inaccurate that it leads to false
conclusions about economic value.

Each of the harmful methods and approaches individually has been proven to cause harm
in a significant number of applications that used them. This is not to say that they always
fail. Sometimes rarely they may even be useful. But in a majority of situations they do
more harm than good in repeated trials.

What is a distressing aspect of the software industry is that bad practices seldom occur in
isolation. From looking the depositions and court documents of lawsuits for projects that

 1
2

were cancelled or never operated effectively, it usually happens that multiple worst
practices are used concurrently.

From data and observations on the usage patterns of software methods and practices, it is
distressing to note that practices in the harmful or worst set are actually found on about
65% of U.S. Software projects as noted when doing assessments. Conversely, best
practices that score 9 or higher have only been noted on about 14% of U.S. Software
projects. It is no wonder that failures far outnumber successes for large software
applications!

From working as an expert witness in a number of breach-of-contract lawsuits, many
harmful practices tend to occur repeatedly. These collectively are viewed by the author
as candidates for being deemed “professional malpractice.” The definition of
professional malpractice is something that causes harm which a trained practitioner
should know is harmful and therefore avoid using it.

Following are 30 issues that have caused trouble so often that the author views them as
professional malpractice, primarily if they occur for applications in the 10,000 function
point size range. That is the range where failures outnumber successes and where
litigation is distressingly common. Only one of 15 lawsuits where the author worked as
an expert witness was smaller than 10,000 function points.

Table 1.3 Candidates for Classification as “Professional Malpractice”

1 Defect removal efficiency < 85%
2 Defect potentials > 6.00 per function point
3 Reusability (high defect volumes)
4 Inadequate cost tracking
5 Excessive schedule pressure
6 Inadequate progress tracking
7 Inadequate security controls
8 Inadequate inspections
9 Inadequate defect tracking methods

10 Failure to estimate requirements changes
11 Error-prone modules in applications
12 Inadequate problem reports
13 Inadequate measurement of quality
14 Rejection of estimates for business reasons
15 Inadequate testing
16 Inadequate risk analysis
17 Inadequate cost estimating methods
18 Inadequate value analysis
19 Inadequate change control
20 Inadequate sizing
21 Partial productivity measures (coding)
22 Lines of code metrics (LOC)

 1
3

23 Inadequate governance
24 Inadequate requirements gathering
25 Cost per defect metrics
26 Inadequate customer support
27 Inadequate measurement of productivity
28 Generalists instead of specialists for large systems
29 Manual cost estimating methods for large systems
30 Inadequate test library control

It is unfortunate that several of these harmful practices, such as “cost per defect” and
“lines of code” are still used for hundreds of projects without the users even knowing that
“cost per defect” penalizes quality and “lines of code” penalizes high-level languages.

Collectively many or most of these 30 practices are noted in more than 75% of software
applications =>10,000 function points in size. Below 1,000 function points the
significance of many of these decline and they would drop out of the malpractice range.

SUMMARY AND CONCLUSIONS

The phrase “software engineering” is actually a misnomer. Software development is not
a recognized engineering field. Worse, large software applications fail and run late more
often than they succeed.

There are countless claims of tools and methods that are advertised as improving
software, but a severe shortage of empirical data on things that really work. There is also
a shortage of empirical data on things that cause harm.

The simple scoring method used in this article attempts to provide at least a rough
correlation between methods and practices and their effectiveness, quality, and
productivity. The current results are somewhat subjective and may change as new data
becomes available. However, the scoring method does illustrate a wide range of results
from extremely valuable to extremely harmful.

 1
4

REFERENCES AND SUGGESTED READINGS

Bundschuh, Manfred and Deggers, Carol; The IT Measurement Compendium; Springer-

Verlag, Heidelberg, Deutschland; ISBN 978-3-540-68187-8; 2008.

Charette, Bob; Software Engineering Risk Analysis and Management; McGraw Hill,

New York, NY; 1989.

Charette, Bob; Application Strategies for Risk Management; McGraw Hill, New York,

NY; 1990.

DeMarco, Tom; Controlling Software Projects; Yourdon Press, New York; 1982; ISBN

0-917072-32-4; 284 pages.

Ewusi-Mensah, Kweku; Software Development Failures; MIT Press, Cambridge, MA;

2003; ISBN 0-26205072-2276 pages.

Galorath, Dan; Software Sizing, Estimating, and Risk Management: When Performance

is Measured Performance Improves; Auerbach Publishing, Philadelphia; 2006;
ISBN 10: 0849335930; 576 pages.

Garmus, David and Herron, David; Function Point Analysis – Measurement Practices for

Successful Software Projects; Addison Wesley Longman, Boston, MA; 2001; ISBN
0-201-69944-3;363 pages.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA;

1993; ISBN 10: 0201631814.

Glass, R.L.; Software Runaways: Lessons Learned from Massive Software Project

Failures; Prentice Hall, Englewood Cliffs; 1998.

International Function Point Users Group (IFPUG); IT Measurement – Practical Advice

from the Experts; Addison Wesley Longman, Boston, MA; 2002; ISBN 0-201-
74158-X; 759 pages.

Johnson, James et al; The Chaos Report; The Standish Group, West Yarmouth, MA;

2000.

Jones, Capers; Best Practices in Software Engineering; (in preparation) McGraw Hill; 1st

edition due in the Summer of 2009.

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN

978-0-07-150244-3; 575 pages; 3rd edition due in the Spring of 2008.

 1
5

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN 0-
13-741406-4; 711 pages.

Jones, Capers; Patterns of Software System Failure and Success; International Thomson

Computer Press, Boston, MA; December 1995; 250 pages; ISBN 1-850-32804-8;
292 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International

Thomson Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York; 2007; ISBN 13-

978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley

Longman, Boston, MA; ISBN 0-201-48542-7; 2000; 657 pages.

Jones, Capers: “Sizing Up Software;” Scientific American Magazine, Volume 279, No. 6,

December 1998; pages 104-111.

Jones, Capers; Conflict and Litigation Between Software Clients and Developers;

Software Productivity Research, Inc.; Narragansett, RI; 2008; 45 pages.

Jones, Capers; “Preventing Software Failure: Problems Noted in Breach of Contract

Litigation”; Capers Jones & Associates, Narragansett, RI; 2008; 25 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition;

Addison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

McConnell; Software Estimating: Demystifying the Black Art; Microsoft Press,

Redmund, WA; 2006.

McConnell, Code Complete; Microsoft Press, Redmond, WA; 1993; ISBN 13-978-

1556154843; 886 pages.

Pressman, Roger; Software Engineering – A Practitioner’s Approach; McGraw Hill, NY;

6th edition, 2005; ISBN 0-07-285318-2.

Radice, Ronald A.; High Qualitiy Low Cost Software Inspections; Paradoxicon

Publishingl Andover, MA; ISBN 0-9645913-1-6; 2002; 479 pages.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley

Longman, Boston, MA; ISBN 0-201-73485-0; 2002; 232 pages.

Yourdon, Ed; Death March - The Complete Software Developer’s Guide to Surviving

“Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle River, NJ; ISBN 0-
13-748310-4; 1997; 218 pages.

 1
6

Yourdon, Ed; Outsource: Competing in the Global Productivity Race; Prentice Hall

PTR, Upper Saddle River, NJ; ISBN 0-13-147571-1; 2005; 251 pages.

 1
7

Web Sites

Information Technology Metrics and Productivity Institute (ITMPI): www.ITMPI.org

International Software Benchmarking Standards Group (ISBSG): www.ISBSG.org

International Function Point Users Group (IFPUG): www.IFPUG.org

Process Fusion: www.process-fusion.net

Project Management Institute (www.PMI.org)

Software Engineering Institute (SEI): www.SEI.org

Software Productivity Research (SPR): www.SPR.com

