Date: 20 February 2012

Essence — Kernel and Language for
Software Engineering Methods

Initial Submission — Version 1.0

In response to: Foundation for the Agile Creation and Enactment of Software Engineering Methods (FACESEM) RFP
(OMG Document ad/2011-06-26)

OMG Document Number: ad/2011-02-04
Standard document URL: http://www.omg.org/cgi-bin/doc?ad/2011-02-04/PDF
Associated File(s)*: http://www.omg.org/cgi-bin/doc?ad/2011-02-04

Submission Team

OMG Submitters:

Fujitsu
Ivar Jacobson International AB
Model Driven Solutions

Supporting Organizations:

Florida Atlantic University

Impetus

International Business Machines Corporation
KTH Royal Institute of Technology
Metamaxim Ltd.

PEM Systems

Stiftelsen SINTEF

University of Duisburg-Essen

Essence, Version 1.0 i

Copyright © 2012, Florida Atlantic University

Copyright © 2012, Fujitsu

Copyright © 2012, Impetus

Copyright © 2012, International Business Machines Corporation
Copyright © 2012, Ivar Jacobson International AB

Copyright © 2012, KTH Royal Institute of Technology
Copyright © 2012, Metamaxim Ltd.

Copyright © 2012, PEM Systems

Copyright © 2012, Stiftelsen SINTEF

Copyright © 2012, University of Duisburg-Essen

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in
any media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to
this specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

ii Essence, Version 1.0

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii)
of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and
(2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R.
227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal
Acquisition Regulations and its successors, as applicable. The specification copyright owners are as indicated above and
may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, [IOP™ | MOF™ | OMG Interface Definition Language (IDL)™ , and OMG SysML™
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

Essence, Version 1.0 iii

AN D W N~

7

8

Table of Contents

N Te0] 01T TP
070701 10 010 1 LoL TSRS
NOrmative REEIENCEScc.vviiieiiiieiieecie et e e e e bae e e nereeeens
Terms and Definitions..........ooccviiiiiiiiieiicecee e e e
N4 881 010 LSS
Additional INfOrmationccviieeiiiiiiiieeeee et
6.1 SubMIttiNG OTGANIZATIONS......ccvereiiiieeiieeeireesireeeteeesteeestteeessreeessseeessseesssseesnsseesssseesssseessseeens 4
6.2 SuppOorting OTZANIZALIONS..........eerureeieeriieeieerieeeteesteeeteesteeeteesseessseeseessseesseessseaseesssesnseessseenns 4
6.3 SUDMISSION CONTACES ...viiiiiieeiiieeiiieesiteeerteeeriee et e et e e etteeetaeeesbaeeenseeesaseeesaseeesnseeesnneesanseeens 4
6.4 ACKNOWICAZEMENLS ...c..viiiiiiieciie ettt et e e et e e sibe e e s abeeesabeeenseeenaeeenneeens 4
6.5 Status Of the DOCUMENLcccuiiiiiiiiieiiecie ettt aeeebe e eaeeabeeeaeeenne 5
6.6 Responses to RFP REQUITEMENLS........ccc.eiiiiiiiiiiieiiie ettt e e 5
Overview of the SPeCIfiCatioNcccviiiiiiiiiiiie e e
7.1 INtroduction t0 ESSEINCEueeiiuiieiiiieciie ettt ettt e e et e st e e sabeeesnseeesnneeenseeens 6
7.2 The Key DIfferentiatorscc.eeiieiiieriieiiieiie ettt et e st e e e 7
Kernel SPecifiCatioNc..eeiieiiiiiiiii ettt e et e e e sare e eens
Bl OVEIVICW ..ottt ettt e e et e et e st e et e e bt e eabeeseeenbeeseesaseenseeenseensseenseesssesnseansseenseenssennns 9
8.1.1 What 18 the KeINel?.....cc.veiiiiiiiie ettt et e e 9
8.1.2 What is In the KeInel?........cooiiiiiiiiieeie e e 9
8.1.3 Organizing the Kernel..........ccouiiiiiiiiiiiiiiiiicieee ettt st 9
8.1.4 Alphas: The Things to WOrk Withcccciiiiiiiiiiieiiieceece e 10
8.1.5 Activity Spaces: The Things t0 DOccccocueriiiiiiiiiiiiiieeeeeee e 11
8.2 The Customer Area Of CONCEIN.........eeiuiiiiieiieeiieiie et eiee et eieeeteesteesaeeseeenseeseessseenseesnseas 13
8. 2.1 INErOAUCHION. ...ccuiiiiiiie ettt e et e et e e st eeenbeeesabeeesnbeeenseeennne 13
B.2.2 AIPNAS .ottt ettt ettt e et e e be e neeebeens 13
8.2.2.1 StaKehOIA@rS.....ccueieiiiiiiieiieie ettt et 13
8.2.2.2 OPPOTTUNILYetieeitieeiiieeiieeeiteeeiteeetteesieeeeiteeessbeeessaeeesseesssseesnseeessseeensseeennseesnssens 16
8.2.3 ACHVILY SPACES ..euviviintiiiiniierieete ettt eit ettt et b et et sbe ettt sbe bt sbe bt et esbe e b eaee 19
8.2.3.1 EXPlore POSSIDIIIIESeeuviiiiiiiieeiiecitesiie ettt et 19
8.2.3.2 Involve the Stakeholderscccieriieiiiiiiieieeeeee e e 19

Essence, Version 1.0

8.2.3.3 Ensure Stakeholder SatiSTACION ...ceeveeiveeeiiieieees 20

I T U N o TN) 41 1<) 4 USRS 20

8.3 The Solution Area Of CONCEIM.....cc.uiiuiiriirieriieierie ettt sttt 21
8.3.1 INErOAUCHION .c..eiuiitieiieite ettt ettt sttt et e bt et st enbe et e eneees 21
LTS TR N | o) - RS T 21
8.3.2.1 REQUITCIMENLS ...uviieiiieiiieiieiieeitesite et estteeteestte e bt eaeeeebeeseessseesseessseenseesssesnseensseenne 21
8.3.2.2 SOftWAre SYSTEIMeiiiiiiiiiieiiiie ettt et et e et e e sbee e stee e nbeeennneas 24
8.3.3 ACHVILY SPACES .vveeeerieeiiieeiieeeitieeeiteeeetteesteeessteeessseeasseeassaeassseeasseesssseessseeessseesssseennns 28
8.3.3.1 Understand the REQUITEMENLS.........ccceeriieriiiiiieiieeiieiie ettt 28
8.3.3.2 Shape the SYStM.....cccciiiiiiiiieiiecie ettt ebe et e e beessaesbeesana e 28
8.3.3.3 Implement the SYSIEIMeiiiuiiiiiiieciiiecee et e e ae e e e e 29
8.3.3.4 Test the SYSIEM...cc.eiiiiiiiiiiieeieeee et 29
8.3.3.5 Deploy the SYSIEMcccuiiiiiiiiieiiecie ettt ettt ebe e e e beessaeeseesaae e 29
8.3.3.6 Operate the SYSIEMccocuiiiiiieciie ettt et e e e e eaeeeeseeennnes 29

8.4 The Endeavor Area Of CONCEIMcccuiiiiiieeiiieeiiee et ete et ieeeeveeeeaveeesereeeeseeeaaeeesseens 30
e T O 012 (T L1 (o1) s DO OSSP RSRRPRRR 30
T N | o) - RS 30
I 3 K - | o s USRS 30
B.4.2.2 WOTK .ottt ettt ettt es 33
8.4.2.3 Way-0f-WOTKINGcccviiiiiieiieeieece et et et e e e e e 36
843 ACHVILY SPACES ..euviiiiniieiiiniiinieete ettt ettt ettt ettt be et sbe ettt sbe e bt et e bt enae e 39
8.4.3.1 Prepare to do the WOrKcc.oiiiiiiiiiiiie e 39
8.4.3.2 CoOrdINate ACHIVILY ...cuueeeiuiieeieieeeiieeeiieeeieeesteeesteeeseaeeessaeesaaeesseeessseeessseesnsseeenseens 39
8.4.3.3 Support the TEAMcceiviiiiiriiiiiiiceteeee et 40
8.4.3.4 TracCK PrOZIESS ..eeouiiieiiieiiie ettt ettt et estee et eesebeeesneeenaaeeennee s 40
8.4.3.5 StOP the WOTK ..cooneviieiie ettt e e e e e e e 40

0 Language SPECITICALIONccccuviieriieeeiiieeeiieeeeteeesiteeeetteeesaeeeenaeeessseeeenreeessseeens 42

0.1 Language DESIZN.....cccuiiiiiiiieiie ettt ettt ettt ettt ettt b et e et sateebeesaeas 43
9.2 Specification TECRANIQUEcccuiiiiiiiiiiiiee et ettt aee e 43
9.2.1 Different Meta-Levels.......cccooiiiiiiiieiieieieeeee e 43
90.2.2 Specification FOrmMat..........ccccoouiiiiniiiiiiiiicieece et 44
0.2.3 NOtAtION USCA ...ttt sttt sttt et st 44
9.3 Language Elements and Language Modelcccoooiieiiiiniieiiiiiiieecceeece e 45
0.3.1 LAYETL-COTC ..ottt st 45

Essence, Version 1.0 v

0.3 11 ALIPRA e 46

0.3.1.2 AIPhAASSOCIATION.eeetvieeiiieeiiie ettt e ettt e esieeeetteesaeeesaeeesbeeessaae e sseeesssaeesseessseennns 47
9.3.1.3 AlphaAssociationENdcccuiiiiiiiiiiiiiiiiciiee e 47
0.3.1.4 CRECKPOINL....cuiiiiiiiiiieiieciie ettt ettt ettt e et e st e eteeetaeesbeessbeesseessseesseessseenseesnseas 48
0.3.1.5 KEIMEL ..ttt et 48
0.3.1.0 SHALC ..ottt et h ettt b e et sb e b et 49
L2 TN R AN 11T € 5 1 o) W USRS 50
0.3.1.8 TTANSIEION ...ttt ettt ettt et ettt et e et e bt e eabe e bt e sabeebeesabeebeesanaans 51
0.3.2 Layer2-PracticCANdAIPRAc.cooiiiiiiiiieee e s 51
0.3.2.1 AIPRA ottt ettt 52
0.3.2.2 AlphaContainment...........cccueeeiuiieeiiiieeiieeeiieeeeieeesieeesaeeesreeesaeeesaeeessseeessseeensseennns 52
0.3.2.3 AIPhaMAnIfesteiiiiiiieiiee ettt e 53
0.3.2:4 PIACHICE ..eeitieiieeieete ettt ettt ettt et n 53
0.3.2.5 WOTKPTIOAUCE ...ttt et 55
9.3.3 Layer3-CompletePractiCecoeriirieiieiinieieiierteieee ettt 55
0.3.3.1 ACHIVILY 1ottt ettt ettt et b et s e e bt et een e et e enteeaeenee 57
0.3.3.2 ACHVIEYMANITESEuiiiiiieeiie ettt e sae e e e e e e e e naeeenaeeeans 58
0.3.3.3 ACHVIEYSPACE. ..cutetiiiiieiteieeteeit ettt ettt ettt ettt ettt ettt naeeas 59
0.3.3:4 AIPRA oottt ettt 59
0.3.3.5 AIPhaASSOCIATION.cceeiiieiiieeiiie et e et e e see e et e e et eesteeesreeessaee e sseeessaeesseessseennns 60
0.3.3.6 ATCAOTCONCEIM....c.uviiiiiieeiiee ettt e et e et e e e tr e e sbeeessbeeesaseeesaseeesseeennns 60
0.3.3.7 COMPELENCY .uvvieeuiiieeiiieeeiie e ettt e steeesieeesteeesseeessseeensseeassseeessseesnsseeesssesensseesnsseesnns 61
0.3.3.8 ComPEtENCYLEVEL....cccuiiieiiie ettt e 62
0.3.3.9 COmMPIEtiONCIIEETIONeiviiieieeiieeitete ettt ettt ettt s sae e 62
0.3.3.10 KEIMEL ..ttt sttt sttt et e naeens 63

L TG T I B o2 1113 1 RSP SPRRPRRS 64
0.3.3.12 PIACHICE ..eeecuvieeiiieeieeeeiee ettt e ettt e et e et e e e te e e e ta e e s abeeessaee e sseeesssaeenssaeessaeensaeeesseennns 64
0.3.3.13 ReqUIrEdCOMPELENCY ...veevieeuiieiieeiieiieeiieerieesteeteeseteeseessreenseessseenseesseesnseessnesseens 66
0.3.3.14 RequIredSKill.......cccuiiiiiiieiie e eaaeeenes 67

L T80 T8 e T < 1 1 ORI 67
0.3.3.16 SKIIILEVEL.....iiiiiiiieiiiieeee ettt sttt 68
90.3.4 Layerd-MethodANdLIDTATrY........cc.oiiiiiiiiiieciie et e 68
0.3.4. 1 LIDIATY ittt ettt ettt et et a b e e esab e et e e sateenbeesnneeneen 68
0.3.4.2 MEthO. .. .ioiiiieiieeeee e st 69
2 S 1) 0101013 15 10 s USSR 70

vi Essence, Version 1.0

0.4, 1 INTOAUCTION ..o, 70

0.4.2 GTaph ALZEDTA......eiiieiieciiee ettt et e et e et e e et e e e ba e e esbe e e e bae e enaaeennnaeens 70
9.4.2.1 Variable Definitioncccceoiiiiiiiiiiiiinieeeeeee et 70
0.4.2.2 RENAMING.....ccoiuiieiiiiieiieeeiieesieeestteesteeesteesstteessteeasaeessseeessseeessseeessseesnsseesnssessnnes 72
0.4.2.3 IMIEIEEC ..ttt e ettt e et e e ettt e e e et e e e e abaeeeeenateeeaanaeeeeenntaaeeeann 72

9.4.3 Required Primitive OPErationscceecueeruieriieeriieniieniieeieeireeteesieesveesseesseeseesseenseens 73

9.4.4 Additional Definitions in the Algebra...........cccooviieiiiiiiiiiiiieeee e 73

9.4.5 CompoSitioN OF PTACICES ...cuviiiiiiieeiiiieeiiiieeieeeiteeete et etee et e e sbe e e sebeeesebeeesaseeennseeens 74
9.4.5.1 Definition of the Compose OPErationccceecueerieeiiienieeiieerieeiieenieereeneeeveens 74
9.4.5.2 Applying the Compose OPerationc.cecueereeerieerieeiieenieeieenieereeseeeseessnesnseens 74

LR S I =5 € 1111 o) 1 USSR 74
9.4.6.1 Simple COMPOSILIONeruiiriiiiiiiiriienteete ettt sttt sttt e b eanesaeens 74

0.5 DYNAMIC SCMANLICSeciuiieiiieitieeiierieetieeieeiteeeteeteessseesseeesseesseessseesseessseesseessseesssessseesssessses 77

0.5.1 DOMAIN CLASSES. ...ceutiiiitiiiieeitieie ettt ettt b e st e s e e ebeesaeeeabeens 77
9.5.1.1 Recap of Meta-modeling Levels..........ccocieiiiiiiiniiiiiiieeee e 77
0.5.1.2 Naming CONVENTION.......ceiiurreriireriieerieeerteeeitreessseeesseeessseeesseeessseeessseessseesssseesnnses 77
0.5.1.3 ADSLract SUPETCIASSES ...eeeevrriiiieeiiieeiieeeiieeesteeesteeeetreeeareesbeeesseeessseeensseeensseeennns 78

0.5.2 Operational SEMANTICScc.eeiiriiriiiiiriieeeeee ettt 79
9.5.2.1 Populating the Level 0 Modelcccoeviieiiiiiiiieeieeie e 79
9.5.2.2 Determining the Overall State...........cccoeeviiiiiiiieiiieeieeee e e 79
0.5.2.3 Generating GUIAANCEccueeuiiruiiriiiieniieteeteste ettt ettt s sae e 80
9.5.2.4 Formal definition of the Guidance Functionccccoecuevieiinieniinenieniecene 80

0.6 GraphiCal SYNLAXooiiiieiiie et e et e et e e et e e s e e e s aaeesabeeennreeennaeas 82

9.6.1 Specification FOrmMat..........ccccoouiiiiiiiiiiiiiieiececece e 82

0.6.2 Relevant SYMDOIScccociiiiiiiiiieiecieeece ettt st ebeeeebeeraeenae s 82

9.6.3 Default Notation for Meta-Class CONSIIUCES.........cccueerieiiiiiriiiiieiie e 82

9.6.4 View 1: Alphas and their Statesccocviviiiiiiiiniiiiceee e 83
0.6.4.1 AIPRA .ottt 83
0.6.4.2 AIPha ASSOCIALION.....cccuviieiiiieeiiieeiieeeiteeecieeeete e st e esteeesseeessaeeessaeeessseeesseessseesnns 83
0.6.4.3 KEIMECL ...oiiiiiiieiii ettt et e et e e e e e e e ba e e abaeeaaeeeaaaeanns 84
0.6.4.4 SHALE .ottt ettt st b e et eb bt 85
0.6.4.5 TTANSIEIONeiiitieiieitie ettt ettt et e bt e et e bt e et e e bt e eabe e bt e sabeebeesabeebeesaeeans 85
0.6.4.6 DIAGIAIMS.coouiiiiiiiiieiie ettt ettt ettt e et e st e et esaeesabee st e eabeessbesabeeeaeeenbeesseeenneens 86
0.6.4.7 CATAS ..ttt ettt ettt sb e 87

9.6.5 View 2: Sub-Alphas and Work Products............ccceeeviieiiiieniieiieeee e 89

Essence, Version 1.0 vii

0.6.5.1 WOTK ProdUucCtcoouiiiiiiiiiiiie et 89
9.6.5.2 Alpha ContaiNmMeNt.........ccccueeeiiiieriiieriieerieeesieeesteeeteeeerreesreeesreeessaeeessseeessseeennns 90
0.6.5.3 Alpha Manifestc.coviiiiiiiiiiiiieeie ettt ettt st e e e eaeen 90
0.6.5.4 PLACHICE ..eeiuiiiiieeitiet ettt ettt ettt s 91

L T T T B T T ¥ s o 1SR 92
9.6.6 View 3: Activity Spaces and ACHVITIESccceeriieriieeieeniieeieerite e esieeeieesieeeseeseaeeneees 93
0.6.6.1 ACHIVIEY 1ottt ettt ettt et ettt b et e h bt et e et et e enteeaeenee 93
0.6.6.2 ACHVIEY SPACE....ceeitieeiiiieeiiieeiieeeiteeesteeestteessteeesteeessseeessseeessseeessseeesssaeensseesssseesnns 93
0.6.6.3 ACLIVILY MANTTEST...ccueiiiieiiiieiiecieeiieee ettt sttt eene s 93
0.6.6.4 ACHIVILY PredeCESSOTviiuiieeiiieiieeie ettt ettt ettt aeebeesaaeebeessaeensaens 94
0.6.6.5 COMPELENICY ..eeeeeueiiieeeeiiiiieeeeiieee e et teeeetteeesetteeeesarreeeessnseeeeesnsseeeeannsseeessnnssaeesnnnns 95
0.6.6.6 DIAGIAIMS.coiiiiiiiiiieiie ettt ettt ettt et e st e et esatesabeesbteeabeesseesabeesaeesnbeesneeenneens 95

L A R0 €10 21 BN 11 b USRS 97
0.7.1 RUIES ettt ettt ettt e et a et e e nt e ne et et e eneenteenne e 97
0.7.1.1 ROOt EICMENLS....ccccuiiieiiiieiieeciieecee ettt ettt et e e e e stae e s eesaae e e saneeesaseeennns 97
9.7.1.2 Kernel EICMENLSccceoiiiiiiiiiiiiieieee ettt sttt seeens 98
0.7.1.3 Practice EIEMENTScceoiiiiiiiiiiiiiieeeee et 100
0.7.1.4 Auxiliary EISMENtScoocuiiiiiiiiiiiiieiiee et 101
L R &5 € 11110 (1TSS 101

Annex A: Responses to RFP Requirementscccoeeviieieiiiiiniiieeeiie e 104
A1 Mandatory REQUITEMENLScccviiiiiiieeiieeeiieeeiieeeieeeetee e teeereeeseaeeesaaeesaaeessaeesnnaeesnneeenns 104
A2 Optional REQUITEMENTS.couiruiiiiiiiriieieeieet ettt ettt et s 110
Annex B: Issues to be DiSCUSSEd.......cuuieeiiiiiiiiiiieiie e 111

Bl KEIMEL. ittt ettt 111
BLll AIPRAS ot e et b e ebeeesaeenbaeenaeenns 111
B.1.1.1 Alternatives Considered but Rejected for Opportunitycccceceveenerveneennenne 111
B.1.1.2 Alternatives Considered but Rejected for Stakeholders...........ccccceeevieeniiiiiiennnnns 112
B.1.1.3 Alternatives Considered but Rejected for Requirementscccoeeveevveeieennnnns 113
B.1.1.4 Alternatives Considered but Rejected for Software Systemcccccveevveeennenn. 113
B.1.1.5 Alternatives Considered but Rejected for Worki...........ccccoevieiiiiniiniiiiniiiiiees 114
B.1.1.6 Alternatives Considered but Rejected for Way of Workingcccceeveevvennnnns 115
B.1.1.7 Alternatives Considered but Rejected for Team..........c.cccccvveevvieeciiecciiecciieee. 115
B.1.2 ACHIVILY SPACES cuvviiuiieiiieiieiieeiteette ettt ettt e et estaeete e st e sabeessaesabeesseesnbeensaesnseesaeans 117
B.1.2.1 Alternative Names for the ACtivity SPacCes.......c.ccccueevuiirireriieniieiieeie e eveeieens 117

viii

Essence, Version 1.0

B.1.3 Alternative sets of aCtiVity SPACES......c.cevuierieeiiieriieeieerieeteesieeereesteeereesaeessseeseeeeseenns 118

B2 SPEM 2.0 ottt et b et ne e te e b et eeaeente e nes 119
Annex C: Practice EXamples.......ccoooiiiiiiiiiiiiie et 120
O B o v To1 3 (o< TPRUSRRPR 120

CoLlil SCIUIT coieiieee ettt et e sb e et e sat e et esabe et esate e b e e naneeane 120
CoLilil PrACHICE cueeeiiietieeite ettt ettt et ettt e b e s et e be e st e ebeesnteenes 120
O3 N 0 N 1] T USRS URSSR 121
C.1.1.3 WOTK ProdUCEScoiiiiiiiiiiieiceet et 125
C.l.1i4 ACHVITIES .eeutietieieeiieeiiete ettt ettt ettt e st et e st este et eeseesaeenaesseeseeneesseeseensesneensens 127
CLLlLS ROIES ettt ettt e et e e ta e e s ta e e s baeesabeeesabeeessbeeeanseeennaeans 128

Cl.2 USEE SEOTY weeiuiiieeiiieeiiee ettt ettt ettt e st e et e et e et e e s st e e sabbeesabteesabeeesaseeesabeesnnseeennseas 129
CiL.21 PrACHICE ettt ettt ettt sat e e bt e st e beesaeeenbeesateenes 129
C.1.2.2 WOTK PrOQUCES ...ooiviiiiiiecie ettt e e saneeeanaeens 130
Cil1.2.3 ACHVITIES .ottt ettt ettt ettt ettt sbe e bt et sae e b et e sbeebesatesbeenneas 130

C.1.3 Lifecycle EXamPLES......cccuiiiouiieiiiieeiie ettt et e e e e e e esseeeeaeeennnes 130
C.1.3.1 The Unified Process Lifecyclecoceviriiniiiiiiiniiiiccceccececeeeen 131
C.1.3.2 The Waterfall LifeCyCleeeruiiiiieiieiiieieeieeeee ettt 132
C.1.3.3 A et of complementary application development lifecycles.........ccccveerveennnnnn. 133

C.2 Composing Practices int0 Methods.........ccceevueiiiiiiiiiiiiniiiiiicececcceee e 137
C.3 Enactment of MEthOdScooiiiiiiiiiiieieieceeete e 137

Essence, Version 1.0 ix

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry
specifications for interoperable, portable, and reusable enterprise applications in distributed,
heterogeneous environments. Membership includes Information Technology vendors, end users,
government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open
process. OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing
ROI through a full-lifecycle approach to enterprise integration that covers multiple operating
systems, programming languages, middleware and networking infrastructures, and software
development environments. OMG’s specifications include: UML® (Unified Modeling Language™);
CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm
Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

UML

MOF

XMI

CWM

Profile specifications

OMG Middleware Specifications

CORBA/IIOP

IDL/Language Mappings
Specialized CORBA specifications
CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

CORBAservices

CORBAfacilities

OMG Domain specifications

OMG Embedded Intelligence specifications
OMG Security specifications

X Essence, Version 1.0

All of OMG’s formal specifications may be downloaded without charge from our website. (Products

implementing OMG specifications are available from individual suppliers.) Copies of specifications,

available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above
or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org
Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from
ordinary English. However, these conventions are not used in tables or section headings where no
distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name
of a document, specification, or other publication.

Essence, Version 1.0 Xi

1 Scope

This document, entitled “Essence — Kernel and Language for Software Engineering Methods” (referred to herein as
Essence, Version 1.0.), is submitted as a response to the OMG "Foundation for the Agile Creation and Enactment of
Software Engineering Methods" (FACESEM) RFP (OMG Document ad/2011-06-26). It provides comprehensive
definitions and descriptions of the kernel and the language for software engineering methods, which address the
mandatory requirements set forth in FACESEM RFP.

The Kernel provides the common ground for defining software development practices. It includes the essential elements
that are always prevalent in every software engineering endeavor, such as Requirements, Software System, Team and
Work. These elements have states representing progress and health, so as the endeavor moves forward the states
associated with these elements progress. The Kernel among other things helps practitioners (e.g., architects, designers,
developers, testers, developers, requirements engineers, process engineers, project managers, etc.) compare methods and
make better decisions about their practices.

The Kernel is described using the Language, which defines abstract syntax, dynamic semantics, graphic syntax and
textual syntax. The Language supports composing two practices to form a new practice, and composing practices into a
method, and the enactment of methods.

This document addresses the RFP mandatory requirements of the Kernel, the Language, and Practice in the following:
e It defines the Kernel and its organizations into three areas of concerns: Customer, Solution and Endeavor.

e It defines the Kernel Alphas (i.e., the essential things to work with), and Activity Spaces (i.e., the essential
things to do).

e It describes the Language specification, Language elements and Language model.
e It defines Language Dynamic Semantics, Graphical Syntax and Textual Syntax.

e It describes examples of composing Practices into Methods and Enactment of Methods.

2 Conformance
<TBD>
3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

e Foundation for the Agile Creation and Enactment of Software Engineering Methods (FACESEM) RFP, OMG
Document ad/2011-06-26, http://www.omg.org/cgi-bin/doc?ad/2011-06-26

e OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, OMG Document formal/2011-08-07,
http://www.omg.org/spec/MOF/2.4.1/

e OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1, OMG Document formal/2011-
08-05, http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

e Diagram Definition (DD), Version 1.0 - FTF Beta 2, OMG Document ptc/2011-07-13,
http://www.omg.org/spec/DD/1.0/Beta2/

e Software & Systems Process Engineering Meta-Model Specification, Version 2.0, OMG Document
formal/2008-04-01, http://www.omg.org/spec/SPEM/2.0/

e K. Schwaber and J. Sutherland, "The Scrum Guide", Scrum.org, October 2011.
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf

Essence, Version 1.0 1

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Activity

An activity defines one or more kinds of work items and gives guidance on how to perform these.

Activity space

A placeholder for something to be done in the software engineering endeavor. A placeholder may consist of zero to many
activities.

Alpha

An essential element of the software engineering endeavor that is relevant to an assessment of the progress and health of
the endeavor. Alpha is an acronym for an Abstract-Level Progress Health Attribute

Alpha association

An alpha association defines a relationship between two alphas.

Area of concern

Elements in kernels or practices may be divided into a collection of main areas of concern that a software engineering
endeavor has to pay special attention to. All elements fall into at most one of these.

Check list item

A check list item is an item in a check list that needs to be verified in a state.

Competency
A characteristic of a stakeholder or team member that reflects the ability to do work.

A competency describes a capability to do a certain job. A competency defines a sequence of competency levels ranging
from a minimum level of competency to a maximum level. Typically, the levels range from 0 — no competence to 5 —
expert. (See Section 9.3.3.7.)

Constraints

Restrictions, policies, or regulatory requirements the team must comply with.

Invariant

An invariant is a proposition about an instance of a language element which is true if the instance is used in a language
construct as intended by the specification.

Kernel

A kernel is a set of elements used to form a common ground for describing a software engineering endeavor.

Method

A method is a composition of practices forming a (at the desired level of abstraction) description of how an endeavor is
performed. A team’s method acts as a description of the team’s way-of- working and provides help and guidance to the
team as they perform their task. The running of a development effort is expressed by a used method instance. This
instance holds instances of alphas, work products, activities, and the like that are the outcome from the real work
performed in the development effort. The used method instance includes a reference to the defined method instance,
which is selected as the method to be followed.

2 Essence, Version 1.0

Opportunity

The set of circumstances that makes it appropriate to develop or change a software system.

Pattern

A pattern is a description of a structure in a practice.

Practice
A repeatable approach to doing something with a specific purpose in mind.

A practice provides a systematic and verifiable way of addressing a particular aspect of the work at hand. It has a clear
goal expressed in terms of the results its application will achieve. It provides guidance to not only help and guide
practitioners in what is to be done to achieve the goal but also to ensure that the goal is understood and to verify that it
has been achieved. (See Section 9.3.2.4.)

Requirements

What the software system must do to address the opportunity and satisfy the stakeholders.

Role

A set of responsibilities.

Software system

A system made up of software, hardware, and data that provides its primary value by the execution of the software.

Stakeholders

The people, groups, or organizations who affect or are affected by a software system.

State

A state expresses a situation where some condition holds.

State Graph

A state graph is a directed graph of states with transitions between these states. It has a start state and may have a
collection of end states.

Team

The group of people actively engaged in the development, maintenance, delivery and support of a specific software
system.

Transition

A transition is a directed connection from one state in a state machine to a state in that state machine.

Way-of-working

The tailored set of practices and tools used by a team to guide and support their work.

Work

Work is defined as all mental and physical activities performed by the team to produce a software system.

Work item

A piece of work that should be done to complete the work. It has a concrete result and it leads to either a state change or a
confirmation of the current state. Work item may or may not have any related activity.

Essence, Version 1.0 3

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Submitting Organizations
The following companies submitted this specification:

o Fuyjitsu

e [var Jacobson International AB

e Model Driven Solutions

6.2 Supporting Organizations
The following companies supported this specification:

¢ Florida Atlantic University

e Impetus

o International Business Machines Corporation

e KTH Royal Institute of Technology

e Metamaxim Ltd.

e PEM Systems

o Stiftelsen SINTEF

o University of Duisburg-Essen

6.3 Submission Contacts

e Paul E. McMahon, PEM Systems, pemcmahon@aol.com

o Jan Michael Spence, Ivar Jacobson International AB, ispence@ivarjacobson.com

e Michael Striewe, University of Duisburg-Essen, michael.striewe@paluno.uni-due.de

o Ed Seidewitz, Model Driven Solutions, ed-s@modeldriven.com

o Brian Elvesater, Stiftelsen SINTEF, brian.elvesater@sintef.no

6.4 Acknowledgements

The work is based on the Semat initiative incepted at the end of 2009, which was envisioned by Ivar Jacobson, along
with the other two Semat advisors Bertrand Meyer and Richard Soley.

Among all the people who have worked as volunteers to make this submission possible, there are in particular a few
people who have made significant contributions: Ivar Jacobson guides the work of this submission; Paul E. McMahon
coordinates this submission; lan Michael Spence leads the architecture of the Kernel and the Kernel specification;
Michael Striewe leads the Language specification with technical leadership from Gunnar Overgaard on the metamodel,
Stefan Bylund on the graphical syntax and Ashley McNeile on the dynamic semantics.

4 Essence, Version 1.0

The following persons are members of the core team that have contributed to the content specification: Andrey A. Bayda,
Arne-Jorgen Berre, Stefan Bylund, Bob Corrick, Dave Cuningham, Brian Elveseter, Michael Goedicke, Shihong Huang,
Ivar Jacobson, Mira Kajko-Mattsson, Prabhakar R. Karve, Bruce Maclsaac, Paul E. McMahon, Ashley McNeile,
Winifred Menezes, Bob Palank, Ed Seidewitz, Ed Seymour, Ian Michael Spence, Michael Striewe and Gunnar
Overgaard.

In addition, the following persons contributed valuable ideas and feedback that improved the content and the quality of
the work behind this specification: Scott Ambler, Chris Armstrong, Jorn Bettin, Stefan Britts, Anders Caspar, Adriano
Comai, Jorge Diaz-Herrera, Jean Marie Favre, Todd Fredrickson, Carlo Alberto Furia, Tom Gilb, Carson Holmes, Capers
Jones, Melir Page Jones, Mark Kennaley, Philippe Kruchten, Yeu Wen Mak, Tom McBride, Bertrand Meyer, Hiroshi
Miyazaki, Martin Naedele, Jaime Pavlich-Mariscal, Jaana Nyfjord, Tom Rutt, Roly Stimson and Paul Szymkowiak.

6.5 Status of the Document

This document is an initial specification for review and comment by OMG members.

6.6 Responses to RFP Requirements
See Annex A.

Essence, Version 1.0 5

7 Overview of the Specification

7.1 Introduction to Essence

The work behind Essence is the Semat initiative" > * — Software Engineering Method and Theory — that was incepted at
the end of 2009. Semat addresses the many issues that challenge the field of software engineering. For example, the
reliance on fads and fashions, the lack of a theoretical basis, the abundance of unique methods that are hard to compare,
the dearth of experimental evaluation and validation, and the gap between academic research and its practical application
in industry.

Successfully developing software systems benefit from the application of effective methods and well-defined processes,
as indicated in the RFP. Traditionally, a method definition is thought of as being instantiated, and the activities -- created
from the definition -- are executed by practitioners (e.g., analysts, developers, testers, project leads) in some predefined
order to get the result, specified by the definition. These software method engineering approaches are often considered by
development teams as being too heavyweight and inflexible. The view — “the team is the computer, the process is the
program” — is not suitable for creative work like software engineering that requires support for work, which is agile, trial-
and-error based and collaboration intensive.

Essence defines a Kernel and a Language for software engineering method specification. They are scalable, extensible,
and easy to use, and allow people to describe the essentials of their existing and future methods and practices so that they
can be compared, evaluated, tailored, used, adapted, simulated and measured by practitioners as well as taught and
researched by academics and researchers. The Kernel provides the common ground to among other things help
practitioners to compare methods and make better decisions about their practices. One of the most important features is
that the Kernel elements form the basis of a vocabulary - a map of the software engineering context. The map would be
used as a base on top of which we can define and describe any method or practice in existence or foreseen in the near
future. The Kernel should also be extensible to care for new technologies, new practices, new social working patterns,
and new research. This is also an application of the principle of separation of concerns: separating the kernel elements
from the specifics of the different methods.

The kernel elements are always prevalent in any software endeavors. They are what we already have (e.g. teams and
work), what we already do (e.g. specify and implement), and what we already produce (e.g. software systems) when we
develop software. An important goal is that the Kernel is small and light at its base but extensible to cover more advanced
uses, such as dealing with life-, safety-, business-, mission-, and security-critical systems.

The Kernel and its elements are defined using a domain-specific language (the domain being practices for software
development), which has a static base (syntax and well-formedness rules) to allow defining methods effectively, and with
additional dynamic features (operational semantics) to enable usage, and adaption. In addition, the language is also used
to define practices and methods.

Practices are described using the Kernel elements; they also allow a practice to be merged with other relevant practices to
form a higher-level “method” or composed practice. The elements in the Kernel must be defined in a way that allows
them to be extensible and tailorable supporting a wide variety of practices, methods, and development teams. The key
concepts include:

e A Method is a composition of practices. Methods are dynamic and used. Methods are not just descriptions for
developers to read, they are dynamic, supporting their day-to-day activities. This changes the conventional
definition of a method. A method is not just a description of what is expected to be done, but a description of
what is actually done.

e A Practice is a repeatable approach to doing something with a specific purpose in mind. A practice provides a
systematic and verifiable way of addressing a particular aspect of the work at hand.

! Software Engineering Method and Theory (Semat) website: www.semat.org

? Ivar Jacobson, Bertrand Meyer, and Richard Soley: “Call for Action: The Semat Initiative” Dr. Dobb's Journal
December 10, 2009. Online at http://www.drdobbs.com/architecture-and-design/222001342

3 Ivar Jacobson, Bertrand Meyer, and Richard Soley: “Software Engineering Method and Theory — A Vision Statement”,
online at http://www.semat.org/pub/Main/WebHome/SEM AT-vision.pdf

6 Essence, Version 1.0

e The Kernel includes essential elements of software engineering.

o The Language is the domain-specific language to define methods, practices and the essential elements of the
kernel.

The relationships among these concepts are depicted in Figure 17,

Methods

Practices

! The Kernel

The Language

Figure 1 - Method architecture

The language design was driven by two main objectives: making methods visible to developers and making methods
useful to developers. The first objective led to the definition of both textual and graphical syntax as well as to the
development of a concept of views in the latter. This way, developers can represent methods in exactly the way that suits
their purposes best. By providing both textual and graphical syntax, nobody is forced to use a graphical notation in
situations where textual notation is easier to handle, and vice versa. By providing a concept of views, nobody is forced to
show a complete graphical representation in situations where a partial graphical representation of a method is sufficient.

The second objective led to the definition of dynamic semantics for methods. This way, a method is more than a static
definition of what to do, but an active guide for a team’s way-of-working. At any point in time in a running software
engineering endeavor, a method can be consulted and it returns advice on what to do next. Moreover, a method can be
tweaked at any point in time and still returns (a possibly alternate) advice on what to do next for the same situation.

7.2 The Key Differentiators

The Essence work is built on the experiences and lessons learnt in the software development community. Some of the
key differentiators set this work apart from what has been done in the past. These are the following’:

1. Finding the essence of software engineering and finding a way to embody that essence in a kernel enables us to
build our knowledge on top of what we have known and learnt, and apply and reuse gained knowledge across
different application domains and software systems of differing complexity.

2. Work with methods in an agile way that are as close to practitioners’ practice as possible, so that they can evolve
the methods and adapt them to their particular context.

3. Apply the principle of Separate of Concerns (SoC) that puts focus on the things that matter the most.

a. Focusing on what helps the least experienced developers over what helps the more experienced
developers. This is motivated by the understanding that the majority of the development community is

* Ivar Jacobson, Shihong Huang, Mira Kajko-Mattsson, Paul McMahon, Ed Seymour. “Semat - Three Year Vision”
Programming and Computer Software 38(1): 1-12 (2012), Springer 2012. DOI: 10.1134/S0361768812010021.

> Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon, Ian Spence. The Essence of Software Engineering — Applying the Semat
Kernel, in preparation to be published

Essence, Version 1.0 7

not interested in method descriptions but rather the use of the method.

b. Supporting practitioners over process engineers. This is motivated by the conviction that process
engineers should work on what practitioners’ need, based on the real work they must do on their
software endeavor.

c. Emphasizing intuitive and concrete graphical syntax over formal semantics. This does not mean that
the semantics is not as important nor as necessary. However, the description should be provided in a
language that can be easily understood by the vast developer community whose interests are to quickly
understand and use the language, rather than caring about the beauty of the language design. Hence,
Essence pays extreme attention to syntax.

d. Focusing on method use over method definition. Most previous similar efforts have paid interest to
method definition, i.e., how to capture methods. These efforts have not focused on how to support the
use of a method in software endeavors. As a result, the methods became ‘“shelf-ware” that are not
relevant to practitioners who actually develop the software. This Essence proposal focuses on the use of
methods so that developers themselves can take control of their own way of working and allow the
method to evolve as their endeavor progresses.

For detailed descriptions of the Kernel and the Language please refer to Section 8 Kernel Specification and Section 9
Language Specification.

8 Essence, Version 1.0

8 Kernel Specification

This section presents the specification for the Software Engineering Kernel. It begins with an overview of the kernel as a
whole and its organization into the three areas of concern. This is followed by a description of each area of concern and
its contents.

8.1 Overview

8.1.1 What is the Kernel?

The Software Engineering Kernel is a stripped-down, light-weight set of definitions that captures the essence of effective,
scalable software engineering in a practice independent way.

The focus of the kernel is to define a common basis for the definition of software development practices, one that allows
them to be defined and applied independently. The practices can then be mixed and matched to create specific software
engineering methods tailored to the specific needs of a specific software engineering community, project, team or
organization. The kernel has many benefits including:

o It allows you to apply as few or as many practices as you like.

It allows you to easily capture your current practices in a reusable and extendable way.
o [t allows you to evaluate your current practices against a technique neutral control framework.

o [t allows you to align and compare your on-going work and methods to a common, technique neutral framework,
and then to complement it with any missing critical practices or process elements.

e It allows you to start with a minimal method adding practices as the endeavor progresses and when you need
them.

8.1.2 What is in the Kernel?

The kernel is described using a small subset of the Kernel Language. It is organized into three areas of concern, each
containing a small number of:

o Alphas — representations of the essential things to work with. The Alphas provide descriptions of the kind of
things that a team will manage, produce, and use in the process of developing, maintaining and supporting good
software. They also act as the anchor for any additional sub-alphas and work products required by the software
engineering practices.

o Activity Spaces - representations of the essential things to do. The Activity Spaces provide descriptions of the
challenges a team faces when developing, maintaining and supporting software systems, and the kinds of things
that the team will do to meet them.

To maintain its practice independence the kernel does not include any instances of the other language elements such as
work products or activities. These only make sense within the context of a specific practice.

The best way to get an overview of the kernel as a whole is to look at the full set of Alphas and Activity Spaces and how
they are related.

8.1.3 Organizing the Kernel

The Kernel is organized into three discrete areas of concern, each focusing on a specific aspect of software engineering.
As shown in Figure 2, these are:

e Customer — This area of concern contains everything to do with the actual use and exploitation of the software
system to be produced.

e Solution — This area of concern contains everything to do the specification and development of the software

Essence, Version 1.0 9

system.

e Endeavor — This area of concern contains everything to do with the team, and the way that they approach their
work.

Customer

Solution

Endeavor

Figure 2 — The Three Areas of Concern

Throughout the diagrams in the body of the kernel specification, the three areas of concern are distinguished with
different color codes where green stands for customer, yellow for solution, and blue for endeavor. The colors will
facilitate the understanding and tracking of which area of concern owns which Alphas and Activity Spaces.

8.1.4 Alphas: The Things to Work With

The kernel Alphas 1) capture the key concepts involved in software engineering, 2) allow the progress and health of any
software engineering endeavor to be tracked and assessed, and 3) provide the common ground for the definition of
software engineering methods and practices. The Alphas, their relationships and their owning areas of concern are shown
in Figure 3.

< provide
Opportunity A Stakeholders
N 0
. %, S q
- , Gy, &3
A o a e =5
20 Ss]
i v L& . 2
g Sof E
2 ' Requirements oftware =
o 5
= / \ <fulfis l System v
= oW =
b =l 2 an =
o g O S
f S = ™
L) B | (1]
Vo 7]
Work < perfarms and plans @
4
9:&)
)OQS' e
Woarking
A S

Figure 3 — The Kernel Alphas

10 Essence, Version 1.0

In the customer area of concern the team needs to understand the stakeholders and the opportunity to be addressed:

1.

Opportunity: The set of circumstances that makes it appropriate to develop or change a software system.

The opportunity articulates the reason for the creation of the new, or changed, software system. It represents the
team’s shared understanding of the stakeholders’ needs, and helps shape the requirements for the new software
system by providing justification for its development.

Stakeholders: The people, groups, or organizations who affect or are affected by a software system.

The stakeholders provide the opportunity and are the source of the requirements and funding for the software
system. They must be involved throughout the software engineering endeavor to support the team and ensure
that an acceptable software system is produced.

In the solution area of concern the team needs to establish a shared understanding of the requirements, and implement,
build, test, deploy and support a software system that fulfills them:

3.

Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

It is important to discover what is needed from the software system, share this understanding among the
stakeholders and the team members, and use it to drive the development and testing of the new system.

Software System: A system made up of software, hardware, and data that provides its primary value by the
execution of the software.

The primary product of any software engineering endeavor, a software system can be part of a larger software,
hardware or business solution.

In the endeavor area of concern the team and its way-of-working have to be formed, and the work has to be done:

5.

8.1.5

Work: Activity involving mental or physical effort done in order to achieve a result.

In the context of software engineering, work is everything that the team does to meet the goals of producing a
software system matching the requirements, and addressing the opportunity, presented by the customer. The
work is guided by the practices that make up the team’s way-of-working.

Team: The group of people actively engaged in the development, maintenance, delivery and support of a
specific software system.

The team plans and performs the work needed to update and change the software system.
Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working
environment. As their work proceeds they continually reflect on their way of working and adapt it as necessary
to their current context.

Activity Spaces: The Things to Do

The kernel also provides a set of activity spaces that complement the Alphas to provide an activity based view of
software engineering.

Essence, Version 1.0 1

I \ I \ I \ 1 \

| A 1 \ | A I \

| \ i % 1 \ i A
| ! i / | / | /
J 4 K / | / ; /
. !/ - / . 4 5 /

Explors Possibilities Involve the Ensure Stakeholder Use the System
Stakeholders Satisfaction

| Understand the Shape the Sysfem Implament the " em Deploythe Systern Operats the Sys

Tastthe S;’Sfem Dé.pfgy %J;Jeuéy;éfem Operate the Systam J

N Hegusmants System
TP T, DB, DB, e . e,
1 \ 1 \ I \ | A 1 \
I \ I 3 I \ I \ I 5
A \ \ \ \
: I : ! : /! : 7 : !
/ / / I !
1 / 1 / I / I / I /
o gy R RIS . BRI
Prepare fo do the Work Coordinate Activity Supportthe Team Track Progress Slop the Work

Figure 4 — The Kernel Activity Spaces
In the customer area of concern the team has to understand the opportunity, and support and involve the stakeholders:

o Explore Possibilities: Explore the possibilities presented by the creation of a new or improved software system.
This includes the analysis of the opportunity to be addressed and the identification of the stakeholders.

¢ Involve the Stakeholders: Involve the stakeholders in the day-to-day activities of the team to ensure that the right
results are produced. This includes identifying and working with the stakeholder representatives to progress the
opportunity.

o Ensure Stakeholder Satisfaction: Share the results of the development work with the stakeholders to gain their
acceptance of the system produced and verify that the opportunity has been successfully addressed.

o Use the System: Use the system in a live environment to benefit the stakeholders.

In the solution area of concern the team has to develop an appropriate solution to exploit the opportunity and satisfy the
stakeholders:

¢ Understand the Requirements: Establish a shared understanding of what the system to be produced must do.

o Shape the system: Shape the system so that it is easy to develop, change and maintain, and can cope with current
and expected future demands. This includes the overall design and architecting of the system to be produced.

e Implement the System: Build a system by implementing, testing and integrating one or more system elements.
This includes bug fixing and unit testing

o Test the System: Verify that the system produced meets the stakeholders’ requirements.
¢ Deploy the System: Take the tested system and make it available for use outside the development team.
e Operate the System: Support the use of the software system in the live environment.

In the endeavor area of concern the team has to be formed and progress the work in-line with the agreed way-of-
working:

e Prepare to do the Work: Set up the team and its working environment. Understand and commit to completing
the work.

12 Essence, Version 1.0

Coordinate Activity: Co-ordinate and direct the team’s work. This includes all on-going planning and re-
planning of the work, and adding any additional resources needed to complete the formation of the team.

Support the Team: Help the team members to help themselves, collaborate and improve their way of working.

Track Progress: Measure and assess the progress made by the team.

Stop the Work: Shut-down the software engineering endeavor and the handover of the team’s responsibilities.

8.2 The Customer Area of Concern

8.2.1 Introduction

This area of concern contains everything to do with the actual use and exploitation of the software system to be produced.

Software engineering always involves at least one customer for the software that it produces. The customer perspective
must be integrated into the day-to-day work of the team to prevent an inappropriate solution from being produced.

8.2.2 Alphas

The customer area of concern contains the following Alphas:
o Stakeholders
o Opportunity

8.2.2.1 Stakeholders

Description
Stakeholders: The people, groups, or organizations who affect or are affected by a software system.

The stakeholders provide the opportunity, and are the source of the requirements for the software system. They are
involved throughout the software engineering endeavor to support the team and ensure that an acceptable software
system is produced.

States

Recognized Stakeholders have been identified.

Represented The mechanisms for involving the stakeholders are agreed and the
stakeholder representatives have been appointed.

Involved The stakeholder representatives are actively involved in the work and
fulfilling their responsibilities.

In Agreement The stakeholder representatives are in agreement.

Satisfied for Deployment The minimal expectations of the stakeholder representatives have been
achieved.

Satisfied in Use The system has met or exceeds the minimal stakeholder expectations.

Associations

provide : Opportunity
support : Team
demand : Requirements

Stakeholders provide Opportunity.
Stakeholders support Team.
Stakeholders demand Requirements.

use and consume : Software System Stakeholders use and consume Software System.

Justification: Why Stakeholders?

Stakeholders are critical to the success of the software system and the work done to produce it. Their input and feedback
help shape the software engineering endeavor and the resulting software system.

Essence, Version 1.0 13

Progressing the Stakeholders

During the development of a software system the stakeholders progress through several state changes. As shown in
Figure 5, they are recognized, represented, involved, in agreement, satisfied for deployment and satisfied in use. These
states focus on the involvement and satisfaction of the stakeholders, from their recognition as stakeholders through their
participation in the development activities to their satisfaction with the use of the resulting software system. They
communicate the progression of the relationship with the stakeholders who are either directly involved in the software
engineering endeavor or support it by providing input and feedback.

g ’ ™
—
Recognized The stakeh clders have been identified.
Represented Themechanismsfori nv_olvm gthe stakeh olde_rs are agreed andthe
stakeh older representatives have been appointed.
. ——
The stakeh older representatives are actively involved in thework and
% Involved fulfilling th eir respon sibiliti es.
Vo T e
) In . .
= Agreement The stakeh clder representatives are in agreement.
]
ok Satisfied f
atsned ror
Theminimal expectations of th e stakeholder representatives have been
Deployment ey
S :
i i e system meets or exceeds the minimal stakeholder expectation s.
Sat'ljﬁEd in Th ds th | staketold
se
\ @ J

Figure 5 — The states of the Stakeholders

As indicated in Figure 5, the first thing to do is to make sure that the stakeholders affected by the proposed software
system are recognized. This means that all the different groups of stakeholders that are, or will be, affected by the
development and operation of the software system are identified.

The number and type of stakeholder groups to be identified can vary considerably from one system to another. For
example the nature and complexity of the system and its target operating environment, and the nature and complexity of
the development organization will both affect the number of stakeholder groups affected by the system.

It is not always possible to have all the stakeholder groups involved. Focus should be primarily on the ones that are
critical to the success of the software engineering endeavor. It is these stakeholder groups that need to be directly
involved in the work. Their selection depends on the level of impact they have on the success of the software system and
the level of impact the software system has on them. The stakeholder groups that assure quality, fund, use, support and
maintain the software system should always be identified.

It is not enough to determine which stakeholder groups need to be involved, they will also need to be actively
represented. This means that there will be one or more stakeholder representatives selected to represent each stakeholder
group, or in some cases one stakeholder representative selected to represent all stakeholder groups, and help the team. To
make the contribution of the stakeholder representatives as effective as possible, they must know their roles and
responsibilities within the software engineering endeavor. Without defining clear roles and responsibilities, the software
engineering endeavor runs the risk that some of its important aspects may get unintentionally omitted or neglected.

Once the stakeholder representatives have been appointed, the represented state is achieved. Here, the stakeholder
representatives take on their agreed to responsibilities and feel fully committed to helping the new software system to

14 Essence, Version 1.0

succeed. Acting as intermediaries between their respective stakeholder groups and the team, they are now granted
authority to carry out their responsibilities on behalf of their respective stakeholder groups.

The team needs to make sure that the stakeholder representatives are actively involved in the development of the software
system. Here, the stakeholder representatives assist in the software engineering endeavor in accordance with their
responsibilities. They provide feedback and take part in decision making in a timely manner. In cases when changes need
to be done to the software system, or when the stakeholder group they represent suggests changes, the stakeholder
representatives make sure that the changes are relevant and promptly communicated to the team. No software
engineering endeavor is fixed from the beginning. Its requirements are continuously evolving as the opportunity changes
or new limitations are identified. This requires the stakeholder representatives to be actively involved throughout the
development and to be responsive to all the changes affecting their stakeholder group.

It may not always be possible to meet all the expectations of all the stakeholders. Hence, compromises will have to be
made. In the in agreement state the stakeholder representatives have identified and agreed upon a minimal set of
expectations which have to be met before the system is deployed. These expectations will be reflected in the
requirements agreed by the stakeholder representatives.

Throughout the development the stakeholder representatives provide feedback on the system’s state from the perspective
of their stakeholder groups. Once the minimal expectations of the stakeholder representatives have been achieved by the
new software system they will confirm that it is ready for operational use and the satisfied for deployment state is
achieved.

Finally, the stakeholders start to use the operational system and provide feedback on whether or not they are truly
satisfied with what has been delivered. Achieving the satisfied in use state indicates that the new system has been
successfully deployed and is delivering the expected benefits for all the stakeholder groups.

Understanding the current state of the stakeholders and how they are progressing towards being satisfied with the new
system is a critical part of any software engineering endeavor.

Checking the progress of the Stakeholders

To help assess the state and progress of the stakeholders, the following checklists are provided:

Table 1 — Checklist for Stakeholders

State Checklist

Recognized o All the different groups of stakeholders that are, or will be, affected by the development
and operation of the software system are identified.

o There is agreement on the stakeholder groups to be represented. At a minimum, the
stakeholders groups that fund, use, support, and maintain the system have been
considered.

o The responsibilities of the stakeholder representatives have been defined.

Represented o The stakeholder representatives have agreed to take on their responsibilities.
o The stakeholder representatives are authorized to carry out their responsibilities.
o The collaboration approach among the stakeholder representatives has been agreed.

o The stakeholder representatives support and respect the team's way of working.

Involved o The stakeholder representatives assist the team in accordance with their responsibilities.

o The stakeholder representatives provide feedback and take part in decision making in a
timely manner.

e The stakeholder representatives promptly communicate changes that are relevant for their
stakeholder groups.

Essence, Version 1.0 15

In Agreement o The stakeholder representatives have agreed upon their minimal expectations for the next
deployment of the new system.

o The stakeholder representatives are happy with their involvement in the work.

e The stakeholder representatives agree that their input is valued by the team and treated
with respect.

o The team members agree that their input is valued by the stakeholder representatives and
treated with respect.

o The stakeholder representatives agree with how their different priorities and perspectives
are being balanced to provide a clear direction for the team.

Satisfied for e The stakeholder representatives provide feedback on the system from their stakeholder
Deployment group perspective.

o The stakeholder representatives confirm that the system is ready for deployment.

Satisfied in Use o Stakeholders are using the new system and providing feedback on their experiences.

The stakeholders confirm that the new system meets their expectations.

8.2.2.2 Opportunity

Description
Opportunity: The set of circumstances that makes it appropriate to develop or change a software system.

The opportunity articulates the reason for the creation of the new, or changed, software system. It represents the team’s
shared understanding of the stakeholders’ needs, and helps shape the requirements for the new sofiware system by
providing justification for its development.

States

Identified A commercial, social or business opportunity has been identified that could
be addressed by a software-based solution.

Solution Needed The need for a software-based solution has been confirmed.

Value Established The value of a successful solution has been established.

Viable It is agreed that a solution can be produced quickly and cheaply enough to
successfully address the opportunity.

Addressed A solution has been produced that demonstrably addresses the opportunity.

Benefit Accrued The operational use or sale of the solution is creating tangible benefits.

Associations

focuses : Requirements Opportunity focuses Requirements.

Justification: Why Opportunity?

Most software engineering work is initiated by the stakeholders that own and use the software system. Their inspiration is
usually some combination of problems, suggestions and directives, which taken together provide the development team
with an opportunity to create a new or improved software system. Occasionally it is the development team itself that
originates the opportunity that they must then sell to the other stakeholders to get funding and support. In many cases the
software system only provides part of the solution needed to exploit the opportunity and the development team must co-
ordinate their work with other teams to ensure that they actually deliver a useful, and deployable system.

In all cases understanding the opportunity is an essential part of software engineering, as it enables the team to:

o Identify and motivate their stakeholders.

16 Essence, Version 1.0

o Understand the value that the software system offers to the stakeholders.

o Understand why the software system is being developed.

o Understand how the success of the deployment of the software system will be judged.
o Ensure that the software system effectively addresses the needs of all the stakeholders.

It is the opportunity that unites the stakeholders and provides the motivation for producing a new or updated software
system. It is by understanding the opportunity that you can identify the value, and the desired outcome that the
stakeholders hope to realize from the use of the software system either alone or as part of a broader business, or technical
solution.

Progressing the Opportunity

During the development of a software system the opportunity progresses through several state changes. As presented in
Figure 6, these are identified, solution needed, value established, viable, addressed, and benefit accrued. These states
indicate significant points in the team’s progression of the opportunity from the initial formulation of an idea to use a
software system through to the accrual of benefit from its use. They indicate (1) when the opportunity is first identified,
(2) when the opportunity has been analyzed and it has been confirmed that a solution is needed, (3) when the
opportunity’s value is established and the desired outcomes required of the solution are clear, (4) when enough is known
about the cost of creating and using the proposed solution that it is clear that the pursuit of the opportunity is viable, (5)
when a solution is available that demonstrably shows that the opportunity has been addressed, and finally (6) when
benefit has been accrued from the use of the resulting solution.

@ 1
Acommercial, social or business opportunity has been
Identified identified that could be addressed by a software-based
: soldtion.
Sclution Theneedfor a software-based salution has been
Needed confirmed.
| e
—_ Value Thzvalue of @ successiul solution has been
g Establiched established.
= R S
(@] Itic agreedthat asolution can ke produced quickly
lable and cheaply enough to successfully addressthe
Q. | \Viabhl d cheapl h fully address th
8— : : opportunity.
Addressed Asolution has been produ cedthat demon strably
addressesthe apportunity.
Benefit The operational use or sale of the solution is creating
Accrued tangible ben efits.
Y ; 7

Figure 6 — The states of the Opportunity

As shown in Figure 6, the opportunity is first identified. The opportunity could be to entertain somebody, learn
something, make some money, or even to change the world. Regardless of the kind of opportunity presented, if it is not
understood by the team it is unlikely that they will produce an appropriate software system. For software engineering
endeavors the opportunity is usually identified by the stakeholders that own and use the software system, and typically
takes the form of an idea for a way to improve the current way of doing something, increase market share or apply a new

Essence, Version 1.0 17

or innovative technology.

Different stakeholders will see the opportunity in different ways, and they will be looking for different results from any
software system produced to address it. It is important that the different stakeholder perspectives are understood and used
to increase the team’s understanding of the opportunity. Analyzing the opportunity to understand the stakeholder’s needs
and any underlying problems is essential to ensure that an appropriate system is produced and a satisfactory return-on-
investment is generated.

Once the opportunity has been analyzed, and it has been agreed that a software-based solution is needed, it is possible to
determine the value that the solution is expected to generate. Progressing the opportunity to value established is an
important step in determining whether or not to proceed with work to address the opportunity as it means that the prize is
clear to everyone involved.

The next step is to establish the viability of the opportunity. An opportunity is viable when a solution can be envisaged
that it is feasible to develop and deploy within acceptable time and cost constraints. Although addressing the opportunity
may be a very valuable thing to do it is probably not a good idea if the resources expended will be greater than the
benefits accrued.

Once it has been agreed that the opportunity is viable then the team can be confident that a software system can be
produced that will not just address the opportunity but will be acceptable to all of the stakeholders. As releases of the
software system become available their viability must be continuously checked to ensure that they meet the needs of the
stakeholders. After a suitable software system has been made available then, as far as the development team is concerned,
the opportunity has been addressed. It is now up to the users of the system to actually use it to generate value and make
sure that for this opportunity there is benefit accrued.

It is important that the team understands the current state of the opportunity so that they can ensure that an appropriate
software system is developed, one that will satisfy the stakeholders and result in a tangible benefit being accrued.
Checking the Progress of the Opportunity

To help assess the state of the opportunity and the progress being made towards its successful exploitation, the following
checklists are provided:

Table 2 — Checklist for Opportunity

State Checklist

Identified e An idea for a way of improving current ways of working, increasing market share or
applying a new or innovative software system has been identified.

o At least one of the stakeholders wishes to make an investment in better understanding the
opportunity and the value associated with addressing it.

o The other stakeholders who share the opportunity have been identified.

Solution Needed o The stakeholders in the opportunity and the proposed solution have been identified.
o The stakeholders' needs that generate the opportunity have been established.

e Any underlying problems and their root causes have been identified.

o It has been confirmed that a software-based solution is needed.

o At least one software-based solution has been proposed.

Value Established e The value of addressing the opportunity has been quantified either in absolute terms or in
returns or savings per time period (e.g. per annum).

e The impact of the solution on the stakeholders is understood.

e The value that the software system offers to the stakeholders that fund and use the
software system is understood.

18 Essence, Version 1.0

o The success criteria by which the deployment of the software system is to be judged are
clear.

o The desired outcomes required of the solution are clear and quantified.

Viable e A solution has been outlined.
o The indications are that the solution can be developed and deployed within constraints.
o The risks associated with the solution are acceptable and manageable.

o The indicative (ball-park) costs of the solution are less than the anticipated value of the
opportunity.

e The reasons for the development of a software-based solution are understood by all
members of the team.

e It is clear that the pursuit of the opportunity is viable.

Addressed e A usable system that demonstrably addresses the opportunity is available.
o The stakeholders agree that the available solution is worth deploying.

o The stakeholders are satisfied that the solution produced addresses the opportunity.

Benefit Accrued e The solution has started to accrue benefits for the stakeholders.

o The return-on-investment profile is at least as good as anticipated.

8.2.3 Activity Spaces
The customer area of concern contains four activity spaces that cover the discovery of the opportunity and the
involvement of the stakeholders:

8.2.3.1 Explore Possibilities

Description

Explore the possibilities presented by the creation of a new or improved software system. This includes the analysis of
the opportunity to be addressed and the identification of the stakeholders.

Explore possibilities to:
o Enable the right stakeholders to be involved.
e Understand the stakeholders’ needs.
o Identify opportunities for the use of the software system.
e Understand why the software system is needed.
o Establish the value offered by the software system.

Input: None

Output: Stakeholders, Opportunity

Completion Criteria: Stakeholders::Recognized, Opportunity:: Identified, Opportunity::Solution Needed,
Opportunity::Value Established.

8.2.3.2 Involve the Stakeholders

Description

Involve the stakeholders in the day-to-day activities of the team to ensure that the right results are produced. This

Essence, Version 1.0 19

includes identifying and working with the stakeholder representatives to progress the opportunity.
Involve the stakeholders to:

e Ensure the right solution is created.

o Give all stakeholder groups a voice.

e Align expectations.

e Collect feedback and generate input.

¢ Ensure that the solution produced provides benefit to the stakeholders.

Input: Stakeholders, Opportunity, Requirements, Software System

Output: Stakeholders, Opportunity

Completion Criteria: Stakeholders::Represented, Stakeholders::Involved, Stakeholders::In Agreement,
Opportunity::Viable

8.2.3.3 Ensure Stakeholder Satisfaction

Description

Share the results of the development work with the stakeholders to gain their acceptance of the system produced and
verify that the opportunity has been successfully addressed.

Ensure the satisfaction of the stakeholders to:

o Get approval for the deployment of the system.

Validate that the system is of benefit to the stakeholders.

Validate that the system is acceptable to the stakeholders.

Independently verify that the system delivered is the one required.

Confirm the expected benefit that the system will provide.

Input: Stakeholders, Opportunity, Requirements, Software System
Output: Stakeholders, Opportunity
Completion Criteria: Stakeholders::Satisfied for Deployment, Opportunity:: Addressed

8.2.3.4 Use the System

Description
Use the system in a live environment to benefit the stakeholders.
Use the system to:

e Generate measurable benefits.

To gather feedback from the use of the system.

To confirm that the system meets the expectations of the stakeholders.

To establish the return-on-investment for the system.

Input: Stakeholders, Opportunity, Requirements, Software System
Output: Stakeholders, Opportunity
Completion Criteria: Stakeholders::Satisfied in Use, Opportunity::Benefit Accrued

20 Essence, Version 1.0

8.3 The Solution Area of Concern

8.3.1 Introduction

This area of concern covers everything to do with the specification and development of the software system.

The goal of software engineering is to develop working software as part of the solution to some problem. Any method
adopted must describe a set of practices to help the team produce good quality software in a productive and collaborative
fashion.

8.3.2 Alphas

The solution area of concern contains the following Alphas:
e Requirements

e Software System

8.3.2.1 Requirements

Description
Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.

It is important to discover what is needed from the software system, share this understanding among the stakeholders and
the team members, and use it to drive the development and testing of the new system.

States

Conceived The need for a new system has been agreed.

Bounded The purpose and theme of the new system are clear.

Coherent The requirements provide a coherent description of the essential
characteristics of the new system.

Sufficiently Described The requirements describe a system that is acceptable to the stakeholders.

Satisfactorily Addressed The requirements that have been addressed satisfy the need for a new system
in a way that is acceptable to the stakeholders.

Fulfilled The requirements that have been addressed fully satisfy the need for a new
system.

Associations

scopes and constrains : Work The Requirements scope and constrain the Work.

Justification: Why Requirements?

The requirements capture what the stakeholders want from the system. They define what the system must do, but not
necessarily how it must do it. They describe the value the system will provide by addressing the opportunity and how the
opportunity will be pursued by the production of a new software system. They also scope and constrain the work by
defining what needs to be achieved.

The requirements are captured as a set of requirement items. The requirement items can be communicated and recorded
in various forms and at various levels of detail. They may be communicated explicitly as a set of extensive requirements
documents or more tacitly in the form of conversations and brain-storming sessions. The requirement items themselves
are always documented and tracked. The documentation can take many forms and be as brief as a one-line user story or
as comprehensive as a use case.

As the development of the system proceeds, the requirements evolve and are constantly re-prioritized and adjusted to
reflect the changing needs of the stakeholders. Much that is implicit at first is made explicit later by adding more detailed
requirement items such as well-defined quality characteristics and test cases. This allows the requirements to act as a
verifiable specification for the software system. Regardless of how the requirement items are captured it is essential that

Essence, Version 1.0 21

the software system produced can be shown to successfully fulfill the requirements. This is why requirements play such
an essential role in the testing of the system. As well as providing a definition of what needs to be achieved, they also
allow tracking of what has been achieved. As the testing of each requirement item is completed it can be individually
checked off as done, and the requirements as a whole can be looked at to see if the system produced sufficiently fulfils
the requirements and whether or not work on the system is finished.

It is important that the overall state of the requirements is understood as well as the state of the individual requirement
items. If the overall state of the requirements is not understood then it will be impossible to 1) tell when the system is
finished, and 2) judge whether or not an individual requirement item is a requirement for this system or another system.

Progressing the Requirements

During the development of a software system the requirements progress through several state changes. As shown in
Figure 7, they are conceived, bounded, coherent, sufficiently described, satisfactorily addressed, and fulfilled. These
states focus on the evolution of the team’s understanding of what the proposed system must do, from the conception of a
new set of requirements as an initial idea for a new software system through their development to their fulfillment by the
provision of a usable software system.

9

| Conceived Theneedfor a new system has been agreed.

%) Bounded The purpose andtheme of the new system are clear..
=z ¥
Ll | | Therequirements provide a coherent description of the
E 5 Coherent essential characteristics of the new system.
w
X | Sufficiently Therequirements describe a system that is
5 Descrived | acceptable to the stakeholders.
L . L Therequirementsthat have been addressed satisfy
xx S:ngamr;y the needfor a new system in away thatis

| e acceptable to the stakeholders.

R T—

5 Fulfilled 5 Therequirementsthat have been addressed fully satisfy

the needfor a new system.

1

As shown in Figure 7, the requirements start in the conceived state when the need for a new software system has been
agreed. The stakeholders can hold differing views on the overall meaning of the requirements. However, they all agree
that there is a need for a new software system and a clear opportunity to be pursued.

Figure 7 — The states of the Requirements

Before too much time is spent collecting and detailing the individual requirement items the requirements as a whole must
be bounded. To bound the requirements, the overall scope of the new system, the aspects of the opportunity to be
addressed, and the mechanisms for managing and accepting new or changed requirement items all need to be established.
In the bounded state there may still be inconsistencies or ambiguities between the individual requirement items.
However, the stakeholders now have a shared understanding of the purpose of the new system and can tell whether or not
a request qualifies as a requirement item. They also understand the mechanisms to be used to evolve the requirement
items and remove the inconsistencies. Once the requirements are bounded there is a shared understanding of the scope of
the new system and it is safe to start implementing the most important requirement items.

22 Essence, Version 1.0

Further elicitation, refinement, analysis, negotiation, demonstration and review of the individual requirement item leads
to a coherent set of requirements, one that clearly defines the essential characteristics of the new system. The requirement
items continue to evolve as more is learnt about the new system and its impact on its stakeholders and environment. No
matter how much the requirement items change, it is essential that they stay within the bounds of the original concept and
that they remain coherent at all times.

The continued evolution of the requirements leads to the capture of a sufficiently described set of requirements, one that
defines a system that will be acceptable to the stakeholders as, at least, an initial solution. The requirements may only
describe a partial solution; however the solution described is of sufficient value that the stakeholders would accept it for
operational use.

As the individual requirement items are implemented and a usable system is evolved, there will come a time when
enough requirements have been implemented for the new system to be worth releasing and using. In the satisfactorily
addressed state the amount of requirements that have been addressed is sufficient for the resulting system to provide clear
value to the stakeholders. If the resulting system provides a complete solution then the requirements may advance
immediately to the fulfilled state.

Usually, when the satisfactorily addressed state is achieved the resulting system provides a valuable but incomplete
solution. To fully address the opportunity, additional requirement items may have to be implemented. The shortfall may
be because an incremental approach to the delivery of the system was selected, or because the missing requirements were
difficult to identify before the system was made available for use.

In the fulfilled state enough of the requirement items have been implemented for the stakeholders to agree that the
resulting system fully satisfies the need for a new system, and that there are no outstanding requirement items preventing
the system from being considered complete.

Understanding the current and desired state of the requirements can help everyone understand what the system needs to
do and how close to complete it is.
Checking the Progress of the Requirements

To help assess the state of the requirements and the progress being made towards their successful conclusion, the
following checklists are provided:

Table 3 — Checklist for Requirements

State Checklist

Conceived o The initial set of stakeholders agrees that a system is to be produced.
o The stakeholders that will use the new system are identified.
o The stakeholders that will fund the initial work on the new system are identified.

o There is a clear opportunity for the new system to address.

Bounded e The stakeholders involved in developing the new system are identified.

o The stakeholders agree on the purpose of the new system.

e It is clear what success is for the new system.

o The stakeholders have a shared understanding of the extent of the proposed solution.
o The way the requirements will be described is agreed upon.

e The mechanisms for managing the requirements are in place.

e The prioritization scheme is clear.

o Constraints are identified and considered.

o Assumptions are clearly stated.

Essence, Version 1.0 23

Coherent e The requirements are captured and shared with the team and the stakeholders.

e The origin of the requirements is clear.

o The rationale behind the requirements is clear.

o Conflicting requirements are identified and attended to.

e The requirements communicate the essential characteristics of the system to be delivered.
o The most important usage scenarios for the system can be explained.

o The priority of the requirements is clear.

e The impact of implementing the requirements is understood.

e The team understands what has to be delivered and agrees to deliver it.

Sufficiently o The stakeholders accept that the requirements describe an acceptable solution.
Described
e The rate of change to the agreed requirements is relatively low and under control.
o The value provided by implementing the requirements is clear.

o The parts of the opportunity satisfied by the requirements are clear.

Satisfactorily ¢ Enough of the requirements are addressed for the resulting system to be acceptable to the
Addressed stakeholders.

o The stakeholders accept the requirements as accurately reflecting what the system does
and does not do.

e The set of requirement items implemented provide clear value to the stakeholders.

e The system implementing the requirements is accepted by the stakeholders as worth
making operational.

Fulfilled o The stakeholders accept the requirements as accurately capturing what they require to
fully satisfy the need for a new system.

e There are no outstanding requirement items preventing the system from being accepted as
fully satisfying the requirements.

o The system is accepted by the stakeholders as fully satisfying the requirements.

8.3.2.2 Software System

Description

Software System: A system made up of software, hardware, and data that provides its primary value by the execution of
the software.

A software system can be part of a larger software, hardware, business or social solution.

States

Architecture Selected An architecture has been selected that addresses the key technical risks and
any applicable organizational constraints.

Demonstrable An executable version of the system is available that demonstrates the
architecture is fit for purpose and supports functional and non-functional
testing.

Usable The system is usable and demonstrates all of the quality characteristics of an

operational system.

24 Essence, Version 1.0

Ready The system (as a whole) has been accepted for deployment in a live

environment.
Operational The system is in use in a live environment.
Retired The system is no longer supported.
Associations
helps to address : Opportunity Software System helps to address Opportunity.
fulfills : Requirements Software Systems fulfills Requirements.

Justification: Why Software System?

Essence uses the term software system rather than software because software engineering results in more than just a piece
of software. Whilst the value may well come from the software, a working software system depends on the combination
of software, hardware and data to fulfill the requirements.

Progressing the Software System

The life-cycle of a software system is hard to define as there can be many releases of a software system. These releases
can be worked on and used in parallel. For example one team can be working on the development of release 3, whilst
another team is making small changes to release 2, and a third team is providing support for those people still using
release 1. If we treat this software system as one entity what state is it in?

To keep things simple, Essence treats each major release as a separate software system; one that is built, released,
updated, and eventually retired. A major release encompasses significant changes to the purpose, usage, or architecture of
a software system. It can encompass many minor releases including internal releases produced for testing purposes, and
external releases produced to support incremental delivery or bug fixes. In the example above the second team would be
producing a series of minor releases (2.1, 2.2, 2.3, etc.) of their software system to allow the delivery of their small
changes.

During its development a software system progresses through several state changes. As shown in Figure 8, they are
architecture selected, demonstrable, usable, ready, operational and retired. These states provide points of stability on a
software system’s journey from its conception to its eventual retirement indicating (1) when the architecture is selected,
(2) when a demonstrable system is produced to prove the architecture and enable testing to start, (3) when the system is
extended and improved so that it becomes usable, (4) when the usable system is enhanced until it is accepted as ready for
deployment, (5) when the system is made available to the stakeholders who use it and made operational, and finally, (6)
when the system itself is retired and its support is withdrawn. These states can be applied to the initial release of the
software system or any subsequent modification or replacement.

Essence, Version 1.0 25

'

Architecture | | cture , S50
| Selected | key technical risks and any applicable organizational
| TS ' Con Stralnts

An architecture has been selectedthat addressesthe

\ An executableversion of the system is available that
| Demaonstrable | clemonstrates th e architectureis fitfor purpose and

E S supportsfunctional and non-functional testing.
Q@ |
> Usable The systern is usableand demonstrates all of the
7)) | quality characteristics required of an operation al
system.
| @
| = i J
| @ Bead The systermn (as awhale) has been accepted for
g v deploymentin a live environ ment.
=
e v
UJ Operational The system is inusein a live environment.

.......................... A :

Petired The system is nolonger supported.

Figure 8 — The states of the Software System

As indicated in Figure 8, the first thing to do for any major software system release is to make sure that there is an
appropriate architecture available; one that complies with any applicable organizational constraints and addresses the key
technical risks facing the new system. Achieving this may require the creation of a brand new architecture, the
modification of an existing architecture, the selection of an existing architecture, or the simple re-use of whatever is
already in place. Regardless of the approach taken, the result is that the system progresses to the architecture selected
state.

Once the architecture had been selected, it must be shown to be fit-for-purpose by building and testing a demonstrable
version of the system. It is not sufficient to just present a set of rolling screen-shots or a stand-alone version of a multi-
user system. The system needs to be truly demonstrable exercising all of the significant characteristics of the selected
architecture. It must also be capable of supporting both functional and non-functional testing.

The demonstrable system is then evolved to become usable by adding more functionality, and fixing defects. Once the
system has achieved the usable state, it has all the qualities desired of an operational system. If it implements a sufficient
amount of the requirements, if it provides sufficient business value, and if there is an appropriate window of opportunity
for its deployment, then it can be considered to be ready for operational use.

Although, a useable system has the potential to be an operational system, there are still a few essential steps to be
performed before it is ready. The system has to be accepted for use by the stakeholders, and it has to be prepared for
deployment in the live environment. In this state, the system is typically supplemented with installation guidance,
training materials and actual training for system operation.

The system is made operational when it is installed for real use within the live environment. It is now being used to
generate value and provide benefit to its stakeholders.

Even after the software system has been made operational, development work can still continue. This may be as part of
the plans for the incremental delivery of the system or, as is more common, a response to defects and problems occurring
during the deployment and operation of the system. Support and maintenance continue until the software system is

26 Essence, Version 1.0

retired and its support is withdrawn. This may be because 1) the software system has been completely replaced by a later
generation, 2) the software system no longer has any users or, 3) it does not make business sense to continue to support it.

During the development of a major release many minor releases are often produced. For example, many teams using an
iterative approach produce a new release during every iteration whilst they keep their software system continuously in a
usable, and therefore potentially shippable, state. It is then the stakeholder representatives who decide whether it is ready
to be made operational. Obviously, this approach is not always possible, particularly if major architectural changes are
required as these often render the system unusable for a significant period of time.

Understanding the current and desired states of a software system helps everyone understand when a system is ready,
what kinds of changes can be realistically made to the system, and what kinds of work should be left to a later generation
of the software system.

Checking the Progress of the Software System

To help assess the state of a software system and the progress being made towards its successful operation, the following
checklist items are provided:

Table 4 — Checklist for Software System

State Checklist
Architecture e The criteria to be used when selecting the architecture have been agreed on.
Selected

e Hardware platforms have been identified.

e Programming languages and technologies to be used have been selected.

¢ System boundary is known.

o Significant decisions about the organization of the system have been made.

e Buy, build and reuse decisions have been made.

Demonstrable e Key architectural characteristics have been demonstrated.

e The system can be exercised and its performance can be measured.
o Critical hardware configurations have been demonstrated.

o Critical interfaces have been demonstrated.

o The integration with other existing systems has been demonstrated.

o The relevant stakeholders agree that the demonstrated architecture is appropriate.

Usable e The system can be operated by stakeholders who use it.

e The functionality provided by the system has been tested.

e The performance of the system is acceptable to the stakeholders.
o Defect levels are acceptable to the stakeholders.

e The system is fully documented.

e Release content is known.

e The added value provided by the system is clear.

Ready o Installation and other user documentation are available.
o The stakeholder representatives accept the system as fit-for-purpose.

o The stakeholder representatives want to make the system operational.

Essence, Version 1.0 27

e Operational support is in place.

Operational e The system has been made available to the stakeholders intended to use it.
e At least one example of the system is fully operational.

o The system is fully supported to the agreed service levels.

Retired e The system has been replaced or discontinued.
o The system is no longer supported.
o There are no “official” stakeholders who still use the system.

o Updates to the system will no longer be produced.

8.3.3 Activity Spaces

The solution area of concern contains six activity spaces that cover the capturing of the requirements and the
development of the software system.

8.3.3.1 Understand the Requirements

Description
Establish a shared understanding of what the system to be produced must do.

Understand the requirements to:

Scope the system.

Understand how the system will generate value.

e Agree on what the system will do.

Identify specific ways of using and testing the system.

Drive the development of the system.

Completion Criteria: Requirements::Conceived, Requirements::Bounded, Requirements::Coherent
Input: Stakeholders, Opportunity, Requirements, Software System, Work, Way-of-Working
Output: Requirements

8.3.3.2 Shape the System

Description

Shape the system so that it is easy to develop, change and maintain, and can cope with current and expected future
demands. This includes the overall design and architecting of the system to be produced.

Shape the system to:
o Structure the system and identify the key system elements.
e Assign requirements to elements of the system.
o Ensure that the architecture is suitably robust and flexible.

Completion Criteria: Requirements::Sufficient, Software System:: Architecture Selected
Input: Stakeholders, Opportunity, Requirements, Software System, Work, Way-of-Working
Output: Requirements, Software System

28 Essence, Version 1.0

8.3.3.3 Implement the System

Description

Build a system by implementing, testing and integrating one or more system elements. This includes bug fixing and unit
testing.

Implement the system to:
e Create a working system.
e Develop, integrate and test the system elements.
o Increase the number of requirements implemented.
e Fix defects.
e Improve the system

Completion Criteria: System::Demonstrable, System::Usable, System::Ready
Input: Requirements, Software System, Way-of-Working
Output: Software System

8.3.3.4 Test the System

Description
Verify that the system produced meets the stakeholders’ requirements.
Test the system to:

o Verify that the software system matches the requirements

o Identify any defects in the software system.

Completion Criteria: Requirements::Sufficient, Requirements::Fulfilled, System:: Demonstrable, System::Usable,
System::Ready

Input: Requirements, Software System, Way-of-Working

Output: Requirements, Software System

8.3.3.5 Deploy the System

Description
Take the tested system and make it available for use outside the development team.
Deploy the system to:

o Package the software system up for delivery to the live environment.

e Make the software system operational.

Completion Criteria: System::Operational
Input: Stakeholders, Software System, Way-of-Working
Output: System

8.3.3.6 Operate the System

Description
Support the use of the software system in the live environment.
Operate the system to:

e Maintain service levels.

Essence, Version 1.0 29

o Support the stakeholders who use the system.
o Support the stakeholders who deploy, operate, and help support the system.

Completion Criteria: System::Retired
Input: Stakeholders, Opportunity, Requirements, Software System, Way-of-Working
Output: System

8.4 The Endeavor Area of Concern

8.4.1 Introduction

This area of concern contains everything to do with the team, and the way that they approach their work.

Software engineering is a significant endeavor that typically takes many weeks to complete, affects many different
people (the stakeholders) and involves a development team (rather than a single developer). Any practical method must
describe a set of practices to effectively plan, lead and monitor the efforts of the team.

8.4.2 Alphas

The endeavor area of concern contains the following Alphas:
e Team
e Work
¢ Way-of-Working

8.4.21 Team

Description

Team: The group of people actively engaged in the development, maintenance, delivery and support of a specific
software system.

The team plans and performs the work needed to create, update and/or change the software system.

States

Seeded The team’s mission is clear and the know-how needed to grow the team is in
place.

Formed The team has been populated with enough committed people to start the
mission.

Collaborating The team members are working together as one unit.

Performing The team is working effectively and efficiently.

Adjourned The team is no longer accountable for carrying out its mission.

Associations

produces : Software System Team produces Software System.

performs and plans : Work Team performs and plans Work.

applies : Way-of-Working Team applies Way-of-Working.

Justification: Why Team?

Software engineering is a team sport involving the collaborative application of many different competencies and skills.
The effectiveness of a team has a profound effect on the success of any software engineering endeavor. To achieve high
performance, team members should reflect on how well they work together, and relate this to their potential and
effectiveness in achieving their mission.

30 Essence, Version 1.0

Normally a team consists of several people. Occasionally, however, work may be undertaken by a single individual
creating software purely for their own use and entertainment. This is however a corner case which can be treated as a
team with only one team member

Progressing the Team

Teams evolve during their time together and progress through several state changes. As shown in Figure 9, the states are
seeded, formed, collaborating, performing, and adjourned. They communicate the progression of a software team on the
journey from initial conception to the completion of the mission indicating (1) when the team is seeded and the
individuals start to join the team (2) when team is formed to start the mission, (3) when the individuals start collaborating
effectively and truly become a team, (4) when the team is performing and achieves a crucial level of efficiency and
productivity, and (5) when the team is adjourned after completing its mission.

@ ! ~
Seeded Theteam’'s missionis clearandthe know-how needed
to growthe teamisin place.
—
EE—
Formed The teamhas been populatedwith enough committed
people to start the mission
E —
<C | Coliaborating The teammembers are workingtogetheras one unit.
1 I
I_ A 4
Performing The team is working effectively and efficiently.
—
A 4
Adiourned Theteamis no longeraccountable for carrying outits
mission.
\. 3 J
\ j

Figure 9 — The states of the Team

As shown in Figure 9, the team is first seeded. This implies defining the mission, deciding on recruitment for the
necessary skills, capabilities and responsibilities, and making sure that the conditions are right for an effective group to
come together. As the team is formed, the people in the group, and those joining it, bring the necessary skills and
experience to the team. The group becomes a team as the people begin to see how they can contribute to the work at
hand. As they discover and take account of each others’ capabilities, they start collaborating effectively and make
progress towards completing their mission.

At its peak of performing, the team shares a way of working, and plays to its strengths to complete its mission effectively
and efficiently. The performing team easily adapts to the changing context and takes appropriate measures. If a number of
people join or leave the team, or the context of the mission changes, it may revert to a previous state. Finally, if the team
has no further goals or missions to complete, it is adjourned.

It is important to understand the current state of the team so that suitable practices can be used to address the issues and
impediments being faced, and to ensure that the team focuses on working effectively and efficiently.

Essence, Version 1.0 31

Checking the Progress of the Team

To help assess the state of a team and its progress, the following checklists are provided:

Table 5 — Checklist for Team

State

Checklist

Seeded

The team mission has been defined in terms of the opportunities and outcomes.
Constraints on the team's operation are known.

Mechanisms to grow the team are in place.

The composition of the team is defined.

Any constraints on where and how the work is carried out are defined.

The team's responsibilities are outlined.

The level of team commitment is clear.

Required competencies are identified.

The team size is determined.

Governance rules are defined.

Leadership model is selected.

Formed

Individual responsibilities are understood.

Enough team members have been recruited to enable the work to progress.
Every team member understands how the team is organized.

All team members understand how to perform their work.

The team members have met (perhaps virtually) and are beginning to get to know each
other

The team members understand their responsibilities and how they align with their
competencies.

Team members are accepting work.
Any external collaborators (organizations, teams and individuals) are identified.
Team communication mechanisms have been defined.

Each team member commits to working on the team as defined.

Collaborating

The team is working as one cohesive unit.
Communication within the team is open and honest.
The team is focused on achieving the team mission.

The team members put the success of the team as a whole ahead of their own personal
objectives.

The team members know each other.

Performing

The team consistently meets its commitments.

The team continuously adapts to the changing context.

32

Essence, Version 1.0

e The team identifies and addresses problems without outside help.

o The team is consistently producing high quality output.

o The team is considered a high performance team.

o Effective progress is being achieved with minimal avoidable backtracking and reworking.

e Wasted work, and the potential for wasted work are continuously eliminated.

Adjourned e The team responsibilities have been handed over or fulfilled.
o The team members are available for assignment to other teams.

o No further effort is being put in by the team to complete the mission.

8.4.2.2 Work

Description
Work: Activity involving mental or physical effort done in order to achieve a result.

In the context of software engineering, work is everything that the team does to meet the goals of producing a software
system matching the requirement and addressing the opportunity presented by the stakeholders. The work is guided by
the practices that make up the team’s way-of-working.

States

Initiated The work has been requested.

Prepared All pre-conditions for starting the work have been met.

Started The work is proceeding.

Under Control The work is going well, risks are under control, and productivity levels are
sufficient to achieve a satisfactory result.

Concluded The work to produce the results has been concluded.

Closed All remaining housekeeping tasks have been completed and the work has
been officially closed.

Associations

updates and changes : Software Work updates and changes Software System.

System

set up to address : Opportunity Work set up to address Opportunity.

Justification: Why Work?

The ability of team members to co-ordinate, organize, estimate, complete, and share their work has a profound effect on
meeting their commitments and delivering value to their stakeholders. Team members need to understand how to carry
out their work, and how to recognize when the work is going well.

Progressing the Work

During the development of a software system the work progresses through several state changes. As shown in Figure 10,
they are initiated, prepared, started, under control, concluded, and closed. These states provide points of stability in the
progression of the work indicating when the work is initiated and prepared, when the team is assembled and the work is
started and brought under control, when the results are achieved and the development work is concluded, and finally,
when the work itself is closed and all loose ends and outstanding work items are addressed.

Essence, Version 1.0 33

F

Initiated YWork has been requested.

|

Frepared All pre-conditions for startin g the work have been met.

j

Started Theworkis proceeding.

H

Under Theworkis goingwell, risks are under control and produ ctivity
Control levels are sufficientto achieve a satisfactory result.

Work

Concluded Thework to produce the results has been concluded.

H

Allremaining housekeepingtasks h ave been completed

Closed andthework has been officially closed.

j

Figure 10 — The states of the Work

As indicated in Figure 10, the work is first initiated. This implies that someone defines the desired result, and makes sure
that the conditions are right for the work to be performed. If the work is not successfully initiated, it will never be
progressed and assigned to a team. As the work is prepared, commitments are made, funding and resources are secured,
the work is organized, appropriate governance policies and procedures are put in place, and priorities, constraints and
impediments are understood. Once all the pre-conditions for starting the work are addressed, the team gets the go-ahead
to get the real work started. The team starts to complete the individual work items, and builds evidence showing that the
work is under control.

There are many practices that can be used to help organize and co-ordinate the work including SCRUM, Kanban,
PMBoK, PRINCE2, Task Boards and many, many more. These typically involve breaking the work down into:

1. Smaller, more bite sized work items that can be completed one-by-one such as work packages, and tasks.
2. One or more clearly defined work periods such as phases, stages, iterations, or sprints.

The level, depth and extent of the work breakdown depends on the style and complexity of the work and on the specific
practices the team selects to help them co-ordinate, monitor, control and undertake the work.

If the team has their work under control then there will be concrete evidence that:
1. The work is going well.

2. The risks threatening a successful conclusion to the work are under control as the impact if they occur and/or the
as likelihood of them occurring have been reduced to acceptable levels.

3. The team’s productivity levels are sufficient to achieve satisfactory results within the time, budget and any other
constraints that have been placed upon the work.

Typically, once the work has been concluded and the results have been accepted by the relevant stakeholders, there
remain some final housekeeping and wrap up activities to be completed before the work itself can be closed.

If, for any reason, the work is not going well, then it may be halted, abandoned or reverted to a previous state. If the work

34 Essence, Version 1.0

is abandoned once it is started, it should still be properly closed even though it has not managed to pass through the
concluded state.

Understanding the current and desired state of the work can help the team to balance their activities, make the correct
investment decisions, nurture the work that is going well, and help or cancel the work that is going badly.
Checking the Progress of the Work

To help assess the state of the work and the progress being made towards its successful conclusion, the following
checklists are provided:

Table 6 — Checklist for Work

State ChecKlist

Initiated e The result required of the work being initiated is clear.

e Any constraints on the work’s performance are clearly identified.
o The stakeholders that will fund the work are known.

o The initiator of the work is clearly identified.

o The stakeholders that will accept the results are known.

o The source of funding is clear.

e The priority of the work is clear.

Prepared o Commitment is made.

e Cost and effort of the work are estimated.

e Resource availability is understood.

¢ Governance policies and procedures are clear.

o Risk exposure is understood.

e Acceptance criteria are defined and agreed with client.

e The work is broken down sufficiently for productive work to start.
o Work items have been identified and prioritized by the team and stakeholders.
e A credible plan is in place.

e Funding to start the work is in place.

e The team is ready to start the work.

o Integration and delivery points are defined.

Started e Development work has been started.
o Work progress is monitored.
o The work is being broken down into actionable work items with clear definitions of done.

e Team members are accepting and progressing work items.

Under Control e Work items are being completed.

o Unplanned work is under control.

o Risks are under control as the impact if they occur and the likelihood of them occurring

Essence, Version 1.0 35

have been reduced to acceptable levels.
o Estimates are revised to reflect the team’s performance.
e Measures are available to show progress and velocity.
e Re-work is under control.

e Work items are consistently completed on time and within their estimates.

Concluded o All outstanding work items are administrative housekeeping or related to preparing the
next piece of work.

o Work results are being achieved.

o The client has accepted the resulting software system.

Closed e [essons learned have been itemized, recorded and discussed.
e Metrics have been made available.

e Everything has been archived.

e The budget has been reconciled and closed.

e The team has been released.

o There are no outstanding, uncompleted work items.

8.4.2.3 Way-of-Working

Description
Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

The team evolves their way of working alongside their understanding of their mission and their working environment. As
their work proceeds they continually reflect on their way of working and adapt it to their current context, if necessary.

States

Principles Established The principles, and constraints, that shape the way-of-working are
established.

Foundation Established The key practices, and tools, that form the foundation of the way of working
are selected and ready for use.

In Use Some members of the team are using, and adapting, the way-of-working.

In Place All team members are using the way of working to accomplish their work.

Working well The team's way of working is working well for the team.

Retired The way of working is no longer in use by the team.

Associations

guides : Work Way-of-Working guides Work.

Justification: Why Way-of-Working?

Software engineering is a team sport, one that requires the whole team to collaborate effectively regardless of how the
team is organized. They need to agree on a way of working that will guide them throughout the software engineering
endeavor.

The way of working:

¢ [s key to enabling a team to work together effectively.

36 Essence, Version 1.0

e Focuses the team on how they will collaborate to ensure success.
o Enables the work to be planned and controlled.

o Helps the team, and their associated stakeholders, to successfully fulfill their responsibilities.

Progressing the Way-of-Working

During the course of a software engineering endeavor the way of working progresses through several state changes. As
presented in Figure 11, they are principles established, foundation established, in use, in place, working well, and retired.
These states focus on the way a team establishes an effective way-of-working indicating (1) when the principles and
constraints that shape the way-of-working are established, (2) when a minimal number of key practices and tools have
been identified and integrated to establish a foundation for the evolution of the team’s way-of-working, (3) when a team's
way of working is in use by the team, (4) when a team’s way of working is in place and in use by the whole team (5)
when it is working well, and (6) when the way of working has been retired and is no longer in use by the team.

@ 2)
(o 2\

-

Principles The principles, and constraints, th at shape th e way-of-working
Established are established.

i

Foundation The key practices, andtools, that form the foundation of the
Established way of workin g are selected andready for use.

i

Some members of the team are using, and adapting, the

In Use ;
way-of-working.

Allteam members are using the way-of-workingto accomplish

Way-of-Working

i Flace theirtasks.
S S
Workingwell Theway-of-working is workingwell forthe team.
SR
Retired The way-of-workingisnolongerin use by the team.
N\ 8 2
(S 4

Figure 11 — The states of the Way-of-Working

There are many ways of working that the team could adopt to meet their objectives and establish their approach to
software engineering. As shown in Figure 11, the first step in adopting a new way-of-working, or adapting an existing
way-of-working, is to understand the team’s working environment and establish the principles that will guide their
selection of appropriate practices and tools. This includes identifying the constraints governing the selection of the team's
practices and tools and understanding the practices and tools that the team, and their stakeholders, are already using or
are required to use.

It is not enough to just understand the principles and constraints that will inform the team's way of working. These must
be agreed with, and actively supported by, the team and its stakeholders. Once the principles are established the team is
ready to start selecting the practices and tools that will form their way-of-working.

To establish a natural way of working the focus should first be on the key practices and tools; those that bring the team
together, enable communication among the team members, support collaborative working and are essential to the success
of the team. However, these practices and tools act as the foundation for the team’s way-of-working. Before the

Essence, Version 1.0 37

foundation can be assembled it is important to understand the gaps between the practices and tools needed by the team
and the practices, and tools immediately available to the team. This enables the activities needed to fill these gaps to be
planned.

Once the key practices and tools are integrated then the way-of-working’s foundation is established and the way-of-
working is ready to be trialed by the team. It will however be continuously adapted as the work progresses, and
additional practices and tools will be added as the team inspects their way-of-working and adapts it to meet their
changing circumstances.

Rather than spending more time tailoring or tuning the way-of-working it is important that the team puts it into use as
soon as possible. The way-of-working is in use as soon as any of the team members are using and adapting it as part of
completing their work. As more and more of the team start to use and benefit from the way-of-working its usage will
grow until it is firmly in place and all the team members are using it to accomplish their work. Some team members may
still need help from their teammates to understand certain aspects of the team's way of working and to make effective
progress, but the way of working is now the normal way for the team to develop software.

As the team progresses through the work, the way of working will become embedded in their activities and
collaborations to such an extent that its use, inspection and adaptation are all seen as a natural part of the way the team
works. The way-of-working is working well once it has stabilized and all team members are making progress as planned
by using and adapting it to suit their current working environment. Finally, when the way of working is no longer in use
by the team, it is retired.

Understanding the current and desired state of the team's way of working helps a team to continually improve their
performance, and adapt quickly and effectively to change.

Checking the Progress of the Way-of-Working

To help assess the current status of the way of working, the following checklists are provided:

Table 7 — Checklist for Way-of-Working

State Checklist
Principles e Principles and constraints are committed to by the team.
Established

¢ Principles and constraints are agreed to by the stakeholders.

e The practice needs of the work and its stakeholders are agreed.

o The tool needs of the work and its stakeholders are agreed.

e A recommendation for the approach to be taken is available.

o The context within which the team will operate is understood.

o The constraints that apply to the selection and use of practices and tools are known.

e The constraints that govern the selection and acquisition of the team's practices and tools
are known.

Foundation e The key practices and tools that form the foundation of the way-of-working are selected.
Established

e Enough practices for work to start are agreed to by the team.
o All non-negotiable practices and tools have been identified.

e The gaps that exist between the practices and tools that are needed and the practices and
tools that are available have been analyzed and understood.

e The capability gaps that exist between what is needed to execute the desired way of
working and the capability levels of the team have been analyzed and understood.

o The selected practices and tools have been integrated to form a usable way-of-working.

38 Essence, Version 1.0

In Use e The practices and tools are being used to do real work.

o The use of the practices and tools selected is regularly inspected.

o The practices and tools are being adapted to the team’s context.

o The use of the practices and tools is supported by the team.

e Procedures are in place to handle feedback on the team’s way of working.

o The practices and tools support team working and collaboration.

In Place o The practices and tools are being used by the whole team to perform their work.
¢ All team members have access to the practices and tools required to do their work.

e The whole team is involved in the inspection and adaptation of the way-of-working.

Working well e Team members are making progress as planned by using and adapting the way-of-working
to suit their current context.

e The team naturally applies the practices without thinking about them
e The tools naturally support the way that the team works.

e The team continually tunes their use of the practices and tools.

Retired e The team's way of working is no longer being used.

e Lessons learned are shared for future use.

8.4.3 Activity Spaces

The endeavor area of concern contains five activity spaces that cover the formation and support of the team, and planning
and co-coordinating the work in-line with the way of working.

8.4.3.1 Prepare to do the Work

Description
Set up the team and its working environment. Understand and commit to completing the work.
Prepare to do the work to:

o Put the initial plans in place.

o Establish the initial way of working.

e Assemble and motivate the initial project team.

e Secure funding and resources.

Completion Criteria: Team::Seeded, Way of Working::Principles Established, Way of Working:: Foundation
Established, Work::Initiated, Work::Prepared

Input: Stakeholders, Opportunity, Requirements

Output: Team, Way of Working, Work

8.4.3.2 Coordinate Activity

Description

Co-ordinate and direct the team’s work. This includes all ongoing planning and re-planning of the work, and adding any

Essence, Version 1.0 39

additional resources needed to complete the formation of the team.

Coordinate activity to:

Select and prioritize work.

Adapt plans to reflect results.

Get the right people on the team.
o Ensure that objectives are met.
e Handle change.

Completion Criteria: Team::Formed, Work::Started, Work::Under Control
Input: Requirements, Team, Work, Way of Working
Output: Team, Way of Working, Work

8.4.3.3 Support the Team

Description
Help the team members to help themselves, collaborate and improve their way of working.
Support the team to:

e Improve team working.

e Overcome any obstacles.

e Improve ways of working.

Completion Criteria: Team::Collaborating, Way of Working::In Use, Way of Working::In Place
Input: Team, Work, Way of Working
Output: Team, Way of Working

8.4.3.4 Track Progress

Description
Measure and assess the progress made by the team.
Track progress to:

e Evaluate the results of work done.

e Measure progress.

o Identify impediments.

Completion Criteria: Team::Performing, Way of Working::Working Well, Work::Under Control, Work::Concluded
Input: Requirements, Team, Work, Way of Working
Output: Team, Way of Working, Work

8.4.3.5 Stop the Work

Description
Shut-down the software engineering endeavor and handover the team’s responsibilities.
Stop the work to:

¢ Close the work.

e Handover any outstanding responsibilities.

40 Essence, Version 1.0

e Handover any outstanding work items.
e Stand down the team.
e Archive all work done.

Completion Criteria: Team::Adjourned, Way of Working::Retired, Work::Closed
Input: Requirements, Team, Work, Way of Working
Output: Team, Way of Working, Work

Essence, Version 1.0

41

9 Language Specification

The Essence language is based on the experience achieved in using earlier languages with a similar set of goals.
Something worked and something didn’t work so well.

We learnt that

1. Though there are many methods, the hypothesis (partly proven experimentally) is that each method is a compo-
sition of a set of practices. The number of practices is a factor 1000 less than the number of methods. The Es-
sence language needs to be able to describe methods as compositions of practices, and to define each practice at
the depth required by the developers using the practice, for instance in terms of the work products it is expected
that developers produce (possibly tacit) while doing real work.

2. Underneath all methods and practices is a common ground, now captured as the Essence kernel. The Essence
language needs to be able to define the kernel and all the elements of the kernel.

3. The discovery of the alpha construct, allowing developers to measure progress and health in a software devel-
opment endeavor. The Essence language needs to be able to define alphas whether they are elements of the ker-
nel or elements defined specific for a practice.

Methods

Practices

! The Kernel

The Language

Figure 12 — The Method architecture of Semat
To get to this result a key idea applied throughout the language design is the principle of Separation of Concerns’.

With this background in mind, the overall goals of the Essence language are: 1) to support different levels of usages, 2) to
make it easy to work with methods to create, compose, compare and change them, and 3) to make methods support the
developers in their daily endeavors.

The first objective should allow developers to use just a subset of all language elements, a subset of all possible
representations, or a subset of all possible usages for the language. See the concept of layers and the concept of views in
the graphical syntax for answers to these challenges.

The second objective moved the graphical syntax into focus, which is considered to be more than plain representation of
constructs, but a key feature of great importance to developers.

The third objective led to the definition of dynamic semantics for methods. This way, a method is more than a static
definition of what to do, but an active guide for a team’s way-of-working. At any point in time in a running software
engineering endeavor, a method can be consulted and it returns advice on what to do next. Moreover, a method can be
tweaked at any point in time and still return (a possibly alternate) advice on what to do next for the same situation.

8 The Principle of Separation of Concerns online at http://en.wikipedia.org/wiki/Separation_of concerns

42 Essence, Version 1.0

9.1 Language Design

As with most language specifications, this specification defines the elements included in the language (the abstract
syntax), some rules for how these elements should be combined to create well-formed language constructs (the static
semantics), and a description of the dynamic semantics of the language. In addition, for some of the elements or language
constructs a concrete syntax (notation) is also provided.

The abstract syntax of the language is organized in layers. Each layer contains a number of elements and their
associations. Besides the bottom layer, each layer may require elements of a lower layer to create well-formed language
constructs. No layer requires elements of a higher layer to create well-formed language constructs. No layer changes the
semantics of the elements on lower layers. However, elements defined on one layer may be extended on a higher layer to
add additional attributes or associations. The reason for designing the language in layers is to allow partial usage of the
language. The layers are the following:

e Layer 1 Core, contains the base elements to form a minimal core of the language. No practices can be expressed
using this layer, but a domain model for software engineering endeavors can be created.

e Layer 2 PracticeAndAlpha, contains the base elements to form minimal practices. No activities can be expressed
using this layer, but concrete work products can be related to abstract domain elements.

e Layer 3 CompletePractice, contains elements to enrich practices by expressing activities, skills, and patterns.
e Layer 4 MethodAndLibrary, contains elements to organize sets of practices.

The concrete syntax of the language is organized in views. Each view provides notations for a subset of elements of the
language. Views are defined and used independently from abstract syntax layers. For example, a view capable of
representing elements from abstract syntax layers 1, 2 and 3 can be used to represent a language construct just containing
elements from abstract syntax layers 1 and 2. The view is allowed to represent just a part of the whole language
construct. In the same way, a view capable of representing just elements from abstract syntax layer 1 can also be used to
represent (parts of) the same language construct. It is allowed to define and use other views than the ones defined in this
language specification.

9.2 Specification Technique

This specification is constructed using a combination of three different techniques: a meta-model, a formal language, and
natural language. The meta-model (see Section 9.3) expresses the abstract syntax and some constraints on the structural
relationships between the elements. An invariant is provided for each element that, together with the structural constraints
in the meta-model, provides the well-formedness rules of the language (the static semantics). The invariants and some
additional operations are stated using the Object Constraint Language (OCL) as the formal language used in this
document. The composition of elements (see Section 9.4) as well as the dynamic semantics (see Section 9.5) are
described using natural language (English) accompanied by a formal calculus where appropriate.

9.2.1 Different Meta-Levels

The meta-model is based upon a standard specification technique using four meta-levels of constructs (meta-classes).
These levels are:

e Level 3 — Meta-Language: the specification language, i.e. the different constructs used for expressing this
specification, like “meta-class” and “binary directed relationship.”

e Level 2 — Construct: the language constructs, i.e. the different types of constructs expressed in this specification,
like “Alpha” and “Activity.”

e Level 1 — Type: the specification elements, i.e. the elements expressed in specific kernels and practices, like
“Requirements” and “Find Actors and Use Cases.”

e Level 0 — Occurrence: the run-time instances, i.e. these are the real-life elements in a running development

Essence, Version 1.0 43

effort.

For a more thorough description of the meta-level hierarchy, see Sections 7.9-7.11 in UML Infrastructure [UML 2011].

9.2.2

Specification Format

Within each section, there is first a brief informal description of the purpose of the elements in that language layer. This is
followed by a description of the abstract syntax of these elements together with some of the well-formedness rules, i.e.
the multiplicity of the associated elements. The abstract syntax is defined by a CMOF model [MOF 2011], the same
language used to define the UML metamodel. Each modeling construct is represented by an instance of a MOF class or
association. In this specification, this model is described by a set of UML class and package diagrams showing the
language elements and their relationships.

Following the abstract syntax is an enumeration of the elements in alphabetic order. Each concept is described according

to:

9.2.3

Heading is the formal name of the language element.

Description is a 1-2 sentence informal brief description of the element. This is intended as a quick reference for
those who want only the basic information about an element.

Generalizations lists each of the parents (superclasses) of the language element, i.e. all elements it has
generalizations to.

Attributes lists each of the attributes that are defined for that element. Each attribute is specified by its formal
name, its type, and multiplicity. This is followed by a textual description of the purpose and meaning of the
attribute. The following data types for attributes are used:

o String

o Boolean

o UnlimitedNatural
o GraphicalElement

Associations lists all the association ends owned by the element. Note that this sub clause does not list the
association-owned association ends. The format for element-owned association ends is the same as the one for
attributes described above.

Invariant describes the well-formedness rules for language constructs including this element. These are mostly
described both with an informal text and with OCL expressions.

Additional Operations describes any additional operations needed when expressing the well-formedness rules.
These are mostly described both with an informal text and with OCL expressions. The section is only present
when there are any additional operations defined.

Semantics provides a detailed description of the element in natural language.

Notation Used

The following conventions are adopted in the diagrams throughout the specification:

44

All meta-class names and class names start with an uppercase letter.

An association with one end marked by a navigability arrow means that the association is navigable in the
direction of that end, the opposite class owns that end, and the association owns the unmarked association end.

If no multiplicity is shown on an association end, it implies a multiplicity of exactly 1.

If an association end is unlabeled, the name for that end is the name of the class to which the end is attached,
modified such that the first letter is a lowercase letter. (Note that, by convention, non-navigable association ends
are often left unlabeled since, in general, there is no need to refer to them explicitly text. However, in some
cases, these are used in formal (OCL) expressions.)

Essence, Version 1.0

e Ifaclass is presented in a diagram of a layer and the class is not defined in that layer, the full name of that class
is used. For instance, Layerl::Alpha refers to the class Alpha that belongs to package Layerl.

9.3 Language Elements and Language Model

This section provides the abstract syntax and static semantics of the language by listing and describing the elements in
the language and the relationships between them. The elements are grouped into layers and each of these layers is
described in a sub-section.

The layers are presented as packages in the diagram shown in Figure 13, and the ordering between the layers are
expressed with package import relationships between the packages. The relationship implies that all elements visible
inside a layer (a package) are visible inside the next layer (the importing package). Note that these layers are not to be
confused with the meta-levels defined in Section 9.2.1.

=

Lawver4-MethodandLibrary

§<:impu:urt:=-:=—

[

Laver3-CompletePractice

§<:impu:urt:>:=—

—

Layer2-Practiceandalpha

{ﬁ::impu:urt:::b

[]

Laverl-Core

Figure 13 — The language is organized in four layers, the elements visible in one layer are imported
into the next layer

9.3.1 Layer1-Core

The intention of layer 1 is to provide all elements necessary to form a kernel containing alphas and alpha associations.
The elements and their relationships are presented in the diagram shown in Figure 14. A detailed definition of each of the
elements is found below.

Essence, Version 1.0 45

Kernel
+basekernel

+name

9.3.1.1 Alpha
Package: Layer1-Core

Description

* +brigfDescription
N Alpha
+name

Alphaassociation

+name

*

+ afssociation
2.[, +end

AlphaAssociationEnd

+isMavigable
+mulkiplicity

) +alpha

+alpha +icon
+briefDescription
+description

+stateGraph | p,.1

StateGraph
1”*
~+transiti P prs
ate
£ Checkpoint
Transition | -FoukgoingTransition :::Etn‘;"t +eheckListltem o
0.1 +name ” +description
; +description

+target T 1

Figure 14 — Layer 1 elements

An essential element that is relevant to an assessment of the progress and health of a software engineering endeavor.

Generalizations
N/A

Attributes

name : String [1]

icon : Graphical Element [1]
briefDescription : String [1]
description : String [1]
Associations

stateGraph : StateGraph [0..1]

46

The name of the alpha.

The icon to be used when presenting the alpha.
A short description of what the alpha is.

A more detailed description of the alpha.

The state graph contained by the alpha to describe its states.

Essence, Version 1.0

Invariant

true

Semantics
Alpha is an acronym that means “Abstract-Level Progress Health Attribute.”

Alphas are subjects whose evolution we want to understand, monitor, direct, and control. The major milestones of a
software engineering endeavor can be expressed in terms of the states of a collection of alphas. Thus, alpha state
progression means progression towards achieving the objectives of the software engineering endeavor.

An alpha has well-defined states, defining a controlled evolution throughout its lifecycle — from its creation to its
termination state. Each state in the state graph has a collection of checkpoints that describe what the alpha should fulfill
in this particular state. Hence it is possible to accurately plan and control their evolution through these states.

9.3.1.2 AlphaAssociation
Package: Layerl-Core

Description

An alpha association defines a relationship between two alphas.

Generalizations
N/A

Attributes

name : String [1] The name of the association.

Associations

end : AlphaAssociationEnd [2] The endpoints of the association.

Invariant

true

Semantics

Alpha associations are used to define a structure by describing relationships between its alphas. They contribute to the
creation of a domain model for software engineering endeavors.

9.3.1.3 AlphaAssociationEnd
Package: Layerl-Core

Description

An alpha association end defines the connection point between an alpha association and an alpha.

Generalizations

N/A

Attributes

isNavigable : Boolean [1] State if the association can be traversed from an instance at the opposite end
to an instance at this end.

multiplicity : UnlimitedNatural [1] State how many instances at this end can be linked to one instance at the

opposite end.

Essence, Version 1.0 47

Associations

alpha : Alpha [1] Instances attached to this end must be of the same type (or subtype) as the
alpha.

Invariant

-- The multiplicity can never be exactly =zero.
multiplicity <> 0

Semantics

Alpha association ends connect the two endpoints of an alpha association to alphas. An alpha association end states
whether it is possible to navigate from an instance at the opposite side of the association to instance at the side of the
alpha association end. Furthermore, the multiplicity of the alpha association end states how many instances at the end
may be linked to one instance at the opposite end.

9.3.1.4 Checkpoint
Package: Layer1-Core

Description

A checkpoint states an item in a check list to be verified in a state.

Generalizations

N/A

Attributes

title : String [1] The title of the checkpoint.
description : String [1] A description of the checkpoint.

Associations
N/A

Invariant

true

Semantics

A checkpoint defines the statement that must be satisfied if the State associated with the checkpoint is said to be reached.

9.3.1.5 Kernel
Package: Layerl-Core

Description

A kernel is a set of elements used to form a common ground for describing a software engineering endeavor.

Generalizations

N/A

Attributes

name : String [1] The name of the kernel.

briefDescription : String [1] A short description of what this particular kernel is designed for.

438 Essence, Version 1.0

icon: GraphicalElement [0..1] The icon to be used when presenting the Kernel.

Associations

alpha : Alpha [*]
alpha association : Alpha Association
[*]

baseKernel : Kernel [*]

The Alphas contained in this Kernel.
The Alpha Associations contained in this Kernel.

The Kernels this Kernel is based on in terms of composition (see Section 9.4
for the definition of composition).

Invariant

-- The alphas associated by alpha associations are available within the kernel or

-- its base kernels.

alphaAssociation->forAll (aa | self.allAlphas ()->includes (aa.end->at (1) .alpha)
and

self.allAlphas ()->includes (aa.end->at (2) .alpha))
and

-- The alphas within the kernel have unique names.

self.alpha->forAll (al, a2 | al <> a2 implies al.name <> a2.name)

Additional Operations

-- Al alphas available within the kernel and its base kernels.
Kernel::allAlphas () set (Alpha)
alpha->union (baseKernel->collect (bk | bk.allaAlphas ())

Semantics

A kernel is a kind of domain model. It defines important concepts that are general to everyone when working in that
domain, like software engineering development.

A kernel may be defined using other, more basic kernels. For example, a more basic kernel may contain elements that are
meaningful to the domain of “Software Engineering” and that may be used in the specific context of “Software

Engineering for safety critical” domains as defined by a dependent kernel.

9.3.1.6 State
Package: Layer1-Core

Description

A state expresses a situation where some condition holds.

Generalizations
N/A

Attributes

name : String [1]
description : String [1]
isStart : Boolean [1]
isEnd : Boolean [1]

Associations

checkpoints : Checkpoint [*]
outgoing transition : Transition [0..1]

Essence, Version 1.0

The name of the state.

Some additional information about the state.
The state is a start state of the state graph.
The state is an end state of the state graph.

A collection of checkpoints associated with the state.
0 or 1 transition leaving the state.

49

Invariant

-- If a state has no outgoing transitions, it must be an end state.
self.outgoingTransitions->size() = 0 implies self.isEnd

Semantics

A state expresses a situation where some invariant holds. This invariant may express a static situation as well as a
dynamic situation, depending on what the state graph expresses in which the state is defined.

9.3.1.7 StateGraph
Package: Layerl-Core

Description

A state graph is a directed graph of states with transitions between these states. It has a start state and may have a
collection of end states. In this language, a state graph is always finite.

Generalizations
N/A

Attributes
N/A

Associations

transition : Transition[*] The transitions contained in the state graph.
state : State [1..*] The states contained in the state graph.
Invariant

-- One and only one State must be the start state of the State Graph.
self.state->exists(s | s.isStart)

and
not self.state->exists(sl,s2 | sl<>s2 and sl.isStart and s2.isStart)
and
-- One State must be the end state of the State Graph.
self.state->exists(s | s.isEnd)
and
-- All Transitions of the State Graph must end in a State defined in the State
-- Graph.
self.transition->forAll(t | self.state->includes(t.target))
and

-- All outgoing transitions of all states in the state graph must be defined in
-- the state graph.

self.state->forAll(s | s.outgoingTransition->forAll(t | self.transition-
>includes(t)))

Semantics

A state graph describes a logical order in which a collection of states is supposed to be traversed. The state graphs are
constrained so that every state has at most one outgoing transition. Note that the state graph is an abstraction in the sense
that it does not need to capture all possible transitions. E.g., loop-backs and alternations between states may occur,
although they are not formally modeled in the graph. A state S is reached when all checkpoint of S are fulfilled and when
all predecessor states of S are also reached. The procedure for determining whether state checkpoints are fulfilled is
manual, thereby requiring human intervention.

50 Essence, Version 1.0

9.3.1.8 Transition
Package: Layer1-Core

Description

A transition is a directed connection from one state in a state graph to a state in that state graph.

Generalizations
N/A

Attributes
N/A

Associations

target : State [1] The target state of the transition.

Invariant

true

Semantics

A transition connects two states in a state graph. The target state of the transition is supposed to be the state to be reached
next, if the owning state of the transition is reached.

9.3.2 Layer2-PracticeAndAlpha

The intention of layer 2 is to provide the basic elements needed for the simplest form of practices. The elements and their
relationships are presented in the diagram shown in Figure 15. A detailed definition of each of the elements is found
below.

Laverl-Core:Alpha Practice
Kernel
+name +basePractice | +name +hasekernel
+Hican “+ican +name
+hrigfDescription * +briefDescription .2 +briefDescription
+description +description
+alpha +alphaManifest | 4 #
WorkProduct
+warkProduct
Alpha 1 AlphaManifest +wiorkProduct :pame
icon
+multiplicity +hbriefDescripti
1 ption
talpha +description
1 gauperalpha

+superdlpha |01

+evelofDetal |Q..1

AlphaContainment

Layer1-Core:stateGraph
+rnultiplicity

Figure 15 — Layer 2 elements

Essence, Version 1.0 51

9.3.21 Alpha
Package: Layer2-PracticeAndAlpha

Description

The alpha construct is extended with properties for being defined in a practice, for being described by work products, and
for having sub-alphas.

Generalizations

Layerl::Alpha

Attributes
N/A

Associations
superAlpha : AlphaContainment [0..1] An association referencing another alpha which is superordinate to this
alpha.

Invariant

true

Semantics

An alpha is often manifested in terms of a collection of work products. These work products are used for documentation
and presentation of the alpha. The shape of these work products may be used for concluding the state of the alpha.

Different practices may use different collections of work products to document the same alpha. For example, one practice
may document all kinds of requirements in one document, while other practices may use different types of documents.
One practice may document both the flow and the presentation of a use case in one document, while another practice may
separate the specification of the flow from the specification of the user interface and write them in different documents.

An alpha may contain a collection of other alphas. Together, these sub-alphas contribute to the state of the superordinate
alpha. However, there is no explicit relationship between the states of the subordinate alphas and the state of their
superordinate alpha.

9.3.2.2 AlphaContainment
Package: Layer2-PracticeAndAlpha

Description

An alpha containment is a relationship between a sub-alpha and its superordinate alpha.

Generalizations
N/A

Attributes

multiplicity : UnlimitedNatural [1] How many instances of the sub-alpha there should be in one instance of the
superordinate alpha.

Associations

superAlpha : Alpha [1] The superordinate alpha.

52 Essence, Version 1.0

Invariant

true

Semantics

An alpha may be defined as a sub-alpha of another alpha (the superordinate alpha). The relationship between the two is
expressed with an alpha containment. A sub-alpha is considered to be part of the superordinate alpha and to contribute to
its state.

The multiplicity of the sub-alpha, i.e. how many instances of the sub-alpha there should be in one instance of the
superordinate alpha, is defined on the relationship.

9.3.2.3 AlphaManifest
Package: Layer2-PracticeAndAlpha

Description

An alpha manifest binds a work product to an alpha.

Generalizations
N/A

Attributes

multiplicity : UnlimitedNatural [1] The possible number of instances of the work product describing one
instance of the alpha.

Associations

alpha : Alpha [1] The alpha bound by this manifest.
workProduct : WorkProduct [1] The work product bound by this manifest.
Invariant

true

Semantics

Alpha manifest represents a tri-nary relationship. It is a relationship from a practice to a work product which is used for
describing an alpha. Several work products may be bound to the same alpha, i.e. there may be multiple alpha manifests
within a practice binding a specific alpha to different work products.

For each alpha manifest, there is a multiplicity stating how many instances there should be of the associated work
product describing one instance of the alpha.

9.3.2.4 Practice
Package: Layer2-PracticeAndAlpha

Description

A practice is a description on how to handle a specific aspect of a software engineering endeavor.

Generalizations
N/A

Attributes

name : String [1] The name of the practice.

Essence, Version 1.0 53

icon : GraphicalElement [0..1] The icon to be used when presenting the practice.
briefDescription : String [1] A short description of what the practice is.
description : String [1] A thorough description of what the practice is.

Associations

alpha : Alpha [*] A collection of alphas defined in this practice.

alphaManifest : AlphaManifest [*] A collection of alpha manifests defined in this practice.

workProduct : WorkProduct [*] A collection of work products defined in this practice.

basePractice : Practice [*] The set of Practices from which this Practice is composed (see Section 9.4
for the definition of composition).

baseKernel : Kernel [*] The Kernels this Practice is based on in terms of composition (see Section

9.4 for the definition of composition).

Invariant

-- The alphas and the work products associated by the alpha manifests are
-- available within the practice, its base practices, or base kernels.
alphaManifest->forAll (am | self.allAlphas ()->includes (am.alpha) and
self.allWorkProducts ()->includes (am.workProduct)

and
-- The alphas have unique names within the practice.
self.workProduct->forAll (wpl, wp2 | wpl <> wp2 implies wpl.name <> wp2.name)

Additional Operations

-- All the alphas available within the practice, its base practices, or base
-- kernels.

Practice::allAlphas () : set(Alpha)

alpha->union (basePractice->collect (bp | bp.allAlphas () ->union (baseKernel-
>collect (bk | bk.allAlphas ()))

-- All the work products available within the practice, its base practices, or
-- base kernels.

Practice::allWorkProducts () : set (WorkProduct)

workProduct->union (basePractice->collect (bp | bp.workProduct ())

Semantics

A practice addresses a specific aspect of development or teamwork. It provides the guidance to characterize the problem,
the strategy to solve the problem, and instructions to verify that the problem has indeed been addressed. It also describes
what supporting evidence, if any, is needed and how to make the strategy work in real life.

A practice includes its own verification, providing it with a clear goal and a way of measuring its success in achieving
that goal.

As might be expected, there are several different kinds of practices to address all different areas of development and
teamwork, including (but not limited to):

e Development Practices — such as practices for developing components, designing user interfaces, establishing an
architecture, planning and assessing iterations, or estimating effort.

e Social Practices — such as practices on teamwork, collaboration, or communication.
e Organizational Practices — such as practices on milestones, gateway reviews, or financial controls.

Except trivial examples, a practice does not capture all aspects of how to perform a development effort. Instead, the
practice addresses only one aspect of it. To achieve a complete description, practices can be composed. The result of
composing two practices is another practice capturing all aspect of the composed ones. In this way, more complete and
powerful practices can be created, eventually ending up with one that describes how an effort is to be performed, i.e. a
method.

The definition of a practice may be based on elements defined in a kernel. These elements, like alphas, may be used (and
extended) when defining elements specific to the practice, like work products.

54 Essence, Version 1.0

A practice may be a composition of other practices. All elements of the other practices are merged and the result becomes
a new practice (see Section 9.4 for the definition of composition).

Simple practices may contain only alphas and work products. In subsequent layers, additional properties will be added to
the practice construct.

9.3.2.5 WorkProduct
Package: Layer2-PracticeAndAlpha

Description

A work product is an artifact of value and relevance for a software engineering endeavor.

Generalizations

N/A

Attributes

name : String [1] The name of the work product.

icon : GraphicalElement [0..1] The icon to be used when presenting the work product.

briefDescription : String [1] A short description of what the work product is.

content : String [1] The content of the work product.

levelOfDetail : String [1] A description of how detailed the description of the work product should be.

Associations

levelOfCompleteness: StateGraph [0..1] The state graph contained by the work product to describe its states.

Invariant

true

Semantics

A work product is a concrete representation of an alpha. It may take several work products to describe the alpha from all
different aspects.

A work product can be of many different types such as models, documents, specifications, code, tests, executables,
spreadsheets, as well as other types of artifacts. In fact, some work products may even be tacit (conversations, memories,
and other intangibles).

Work products may be created, modified, used, or deleted during an endeavor. Some work products constitute the result
of (the deliverables from) the endeavor and some are used as input to the endeavor.

A work product could be described at different levels of details, like overview, user level, or all details level, and during
its evolvement it may have reached different states of completeness, like draft, outline, complete, and approved.

9.3.3 Layer3-CompletePractice

The intention of layer 3 is to provide additional elements to deal with more advanced practices. The elements and their
relationships are presented in the diagrams shown in Figure 16, Figure 17, and Figure 18. A detailed definition of each of
the elements is found below.

Essence, Version 1.0 55

Larerl-Core:Kernel

+name
+briefescription

Layer1-Core:State

HisStart
-HisEnd
+name
+description

+reachedState

Layer2-PracticeAndAlphazPractice

+name

Hican
+hriefDescription
+description

| —
CompletionCriterion
. +predecessor
| +ackivitySpace " +description +completionCriterion
+activibySpace | * L.
— ornpletionCriterion 1 Activity
ActivitySpace :
+activitp| +name +activity Practice
+name 1 +icon
~Hicon # | +briefDescription *
+activikySy 1. p
~+briefDescription activityopace +approach
*
+actiyityManifest
+inputMarkProduct
AHnput &
“Hnputalpha Layer2-PracticeAndAlpha:WorkProduct
*

+coficernType output Alpha ¥ HoutputworkProduck | +name

o1 +icon

i ¥ utputAlpha # | +briefDescription

ol +description

AreaOfConcern
+ooncernType +concernType
+definition

Layer2-PracticeAndAlphazalpha

Layer1-Core:Alphafssociation

“+name

Figure 16 — Layer 3 Activity Space and Activity elements

Layerl-Corex:Kernel

+briefDescription

+mmpetj:w
Competency
CompetencylLevel

+name 3
+ican +name
+briefDescription | . +brisfDescription

1 +possilelevel | el

*

+requiredCompetency
+efmpetency

1%

+requiredLevel

RequiredCompetency

+requiredCompetency

“+requiredCompetency

+predecessar

Layer2-PracticeAndAlphazPractice

+name

~Hican
+briefDescription
“+description

¢

| Practice ‘

|
XX

Activit
o * ActivitySpace g
L 1 ActivityManifest hactivty | +name
+name: +icon ity
I: +attlwt:{SDa &-whmnm : R TR e 1.% | +briefDescription
+briefDescription Y3p “approach "
+activitySpac “activityMarifest
e requiredskil
Requiredskill [*
+requiredskill
+requiredLevel
3 1
AreaDfConcern 4l HEsEe & Shifevel
+ncernTyp: = 0.1 +
+cancernType
S 1 +hriefDescription possblelevel |) otescription
0.1 +concernType +icon +Hevel

56

w ¢+sknll

Figure 17 — Layer 3 Competency and Skill elements

Essence, Version 1.0

9.3.3.1 Activity

ActivitySpace Activity
+name +name
Hcon Hcon
+briefDescription +briefDescription
+approach
+activity Space e #
Pattern oh
: * +alpha
Practice g B Alpha
+pattern +descripkion *
a +wgrkProduct
+state
*
Layerl-Core:State Layer2-Practice AndalphazWorkProduct
+isSkark +name
+isEnd i
+name +briefDescription
+description +description

Figure 18 —

Package: Layer3-CompletePractice

Description

Layer 3 Pattern elements

An activity defines one or more kinds of work items and gives guidance on how to perform these.

Generalizations
N/A

Attributes

name : String [1]

icon : GraphicalElement [1]
briefDescription : String [1]
approach : String [1..*]

Associations

name : String [1]

The name of the activity.

The icon to be used when presenting the activity.
A short description of what the activity is.
Different approaches to accomplish the activity.

completionCriterion : CompletionCriterion [1..*]

requiredCompetency : RequiredCompetency [*]

requiredSkill : RequiredSkill [*]
inputAlpha : Alpha [*]

outputAlpha : Alpha [*]

inputWorkProduct : WorkProduct [*]

Essence, Version 1.0

The name of the activity.

A collection of completion criteria that have to be fulfilled for
considering the activity completed.

A collection of competencies required for completing this activity
successfully.

A collection of skills required for completing this activity
successfully.

A collection of Alphas which need to be present in order to start
this activity.

A collection of Alphas that will be present when this activity is
completed successfully.

A collection of Work Products which need to be present in order

57

to start this activity.

outputWorkProduct : WorkProduct [*] A collection of Work Products that will be present when this
activity is completed successfully.

predecessor : Activity [*] A collection of Activities supposed to precede this Activity.

Invariant

-- Each completion criterion must refer to a state of an output alpha of the
-- activity.
self.completionCriterion->forAll (c | self.outputAlpha->exists (a |
a.stateGraph.state->includes (c.reachedState)))

and
-- The required skills of the activity should be part of the possible skills of
-- the activity’s required competencies.
self.requiredSkill->forAll(rs | self.requiredCompetency->exists(rc |
rc.requiredCompetency->exists(pl | pl.requiredSkill.includes(rs)))

Semantics

An activity describes some work to be performed. It can take alphas or work products as input to the work, and alphas or
work products may be created or updated during the activity. However, it is not defined when these have been created or
updated; only that this has been done when the activity is completed.

The activity is considered completed if all its completion criteria are fulfilled. However, it is not specified that this has to
happen due to performing this activity. The activity is thus also considered completed if all completion criteria are
fulfilled for other reasons.

The activity is a manifestation of (part of) an activity space through the activity manifest. The activities filling the same
activity space jointly contribute to the achievement of the completion criteria of the activity space. Activities may define
different approaches to reach a goal which may imply restrictions on how different activities may be combined. One
activity may be bound to multiple activity spaces within a practice.

The activity may have predecessors which are recommended to be completed before the activity can be completed as
well. However, this association is just considered as a hint to the performer(s) of the activity. As stated above, the activity
is considered completed if all completion criteria are fulfilled, even if some predecessor is not completed for any reason.

To be likely to succeed with the activity, the performer(s) of the activity must have at least the competencies and skills
required by the activity to be able to perform that activity with a satisfactory result.

9.3.3.2 ActivityManifest
Package: Layer3-CompletePractice

Description

An activity manifest binds a collection of activities to an activity space.

Generalizations
N/A

Attributes
N/A

Associations

activitySpace : ActivitySpace [1] The activity space filled by this manifest.
activity : Activity [1..*] The activities bound to the activity space.
Invariant

true

58 Essence, Version 1.0

Semantics

Activity manifest represents a tri-nary relationship. It states which activities are bound to which activity space in a
practice.

9.3.3.3 ActivitySpace

Package: Layer3-CompletePractice

Description

A placeholder for something to be done in the software engineering endeavor.

Generalizations

N/A

Attributes

name : String [1] The name of the activity space.

icon : GraphicalElement [1] The icon to be used when presenting the activity space.
briefDescription : String [1] A short description of what the activity space is.

Associations

requiredCompetency : RequiredCompetency [1..*¥] A collection of competencies and competency levels required to
be successful in fulfilling the objectives of this activity space.

completionCriterion : CompletionCriterion [1..*] A collection of completion criteria that have to be fulfilled for
considering the objectives of this activity space to be fulfilled.

input : Alpha[*] A collection of alphas that have to be present to be successful in
fulfilling the objectives of this activity space.

output : Alpha [*] A collection of alphas that will be present when the objectives of
this activity space have been fulfilled.

concernType : AreaOfConcern [0..1] The area of concern this activity space belongs to.

Invariant

-- Each completion criterion must refer to a state of an output alpha of the
-- activity space.

self.completionCriterion->forAll (c | self.output->exists (a |
a.stateGraph.state->includes (c.reachedState)

Semantics

An activity space is a high-level abstraction of something to be done. It uses a (possibly empty) collection of alphas as
input to the work. When the work is concluded a collection of alphas (possibly some of the alphas used as input) has been
updated. The update may cause a change of the alpha’s state. When the update and the state change of an alpha takes
place is not defined; only that it has been done when the activity space is completed.

What should have been accomplished when the work performed in the activity space is completed, i.e. the activity
space’s completion criteria, is expressed in terms of which states the output alphas should have reached. Using the
checkpoints for the states of alphas, it is at the discretion of the team to decide when a state change has occurred and thus
the completion criteria of the activity space have been met.

9.3.34 Alpha
Package: Layer3-CompletePractice

Description

The alpha construct is extended with properties for being used as input to and output from activities and activity spaces,

Essence, Version 1.0 59

and for having an area of concern.

Generalizations
Layer2::Alpha

Attributes
N/A

Associations

concernType : AreaOfConcern [0..1] The area of concern the alpha belongs to.

Invariant

true

Semantics

An alpha may be used as input to an activity space in which the content of the alpha is used when performing the work of
the activity space. The alpha (and its state) may be created or updated during the performance of activities in an activity
space. An alpha may belong to an area of concern.

9.3.3.5 AlphaAssociation
Package: Layer3-CompletePractice

Description

The alpha association construct is extended with properties for having an area of concern.

Generalizations

Layerl::AlphaAssociation

Attributes
N/A

Associations

concernType : AreaOfConcern [0..1] The area of concern the alpha association belongs to.

Invariant

true

Semantics

An alpha association may belong to an area of concern.
9.3.3.6 AreaOfConcern

Package: Layer3-CompletePractice

Description

Elements in kernels or practices may be divided into a collection of main areas of concern that a software engineering
endeavor has to pay special attention to. All elements fall into at most one of these main areas of concern.

60 Essence, Version 1.0

Generalizations

N/A

Attributes

concernType : String [1] The type of the area of concern.

definition : String [1] A description of the area of concern.

icon : GraphicalElement [1] The icon to be used when presenting this area of concern.

Associations
N/A

Invariant

true

Semantics

Area of concern is a grouping facility to organize the elements in kernels and practices. They provide an overview on
different aspects of software engineering endeavors, but do not imply any fixed semantics.

As already described in Section 8.1.3 there are three main areas of concern that software engineering endeavors have to
pay special attention to:

e Customer space — in every software engineering endeavor, there are stakeholders to satisfy. These have needs,
problems to solve, and money to spend on solving them.

e Solution space — on the way to executable software, we need to consider the specification and ensure that the
implementation meets requirements. The software needs to be thoroughly tested and verified before we can hand
it over to the end-users.

e Endeavor space — there is work to be done and we need a team to do it. They will likely need some direction and
support. Work needs to be planned and progress must be monitored.

9.3.3.7 Competency
Package: Layer3-CompletePractice

Description

A competency describes a capability to do a certain job.

Generalizations

N/A

Attributes

name : String [1] The name of the competency.

icon : GraphicalElement [1] The icon to be used when presenting the competency.
briefDescription : String [1] A short description of what the competency is.

Associations
possibleLevel : CompetencyLevel [*] A collection of levels defined for this competency.
concernType : AreaOfConcern [0..1] The area of concern the competency belongs to.

Invariant

-- The possible levels are distinct
self.possibleLevel->forAll (11, 12 | 11 <> 12 implies 1ll.level <> 1l2.level)

Essence, Version 1.0 61

Semantics

A competency is used for defining a capability of being able to work in a specific area. In the same way as an Alpha is an
abstract thing to monitor and control and an Activity Space is an abstraction of what to do, a Competency is an abstract
collection of knowledge, abilities and attitudes. Examples for Competencies that could be defined in a Kernel include
“Analyst”, “Developer”, or “Tester”.

A competency defines a sequence of competency levels ranging from a minimum level of competency to a maximum
level. Typically, the levels range from 0 — no competence to 5 — expert.

9.3.3.8 CompetencylLevel
Package: Layer3-CompletePractice

Description

A competency level defines a level of how competent or able someone is in a subject.

Generalizations

N/A

Attributes

name : String [1] The name of the competency level.

briefDescription : String [1] A short description of what the competency level is.

level : Integer [1] A numeric indicator for the level, where a higher number means more/better
competence.

Associations

requiredSkill : RequiredSkill [*] The skills required at this level.

Invariant

true

Semantics

Competency levels are used to create a range of abilities from poor to excellent or small scale to large scale. While a
competency describes what capabilities are needed (such as “Analyst” or “Developer”), a competency level adds a

CEINT3

qualitative grading to them (such as “basic”, “advanced”, or “excellent”).

Particular skills can be associated with a Competency level if some particular level in that skill is required to reach this
Competency level. For example there may be no particular skills be associated with the “basic” level of “Developer”, but
on an “advanced” level some skills in communicating in English are required to be able to read and write code
comments. Most likely, particular skills are associated with Competency levels defined in a Practice, but not in the
Kernel.

9.3.3.9 CompletionCriterion
Package: Layer3-CompletePractice

Description

A completion criterion defines which state an alpha or work product should have reached in order to consider an activity
or activity space completed.

Generalizations
N/A

62 Essence, Version 1.0

Attributes

description : String [1] A description of the criterion which is to be reached at the target state.

Associations

reachedState : State [1] A state to be reached.

Invariant

true

Semantics

The work of an activity or activity space is considered complete when the associated completion criteria are fulfilled, i.e.
when the alpha states and work product states defined by the completion criteria are reached.

9.3.3.10 Kernel
Package: Layer3-CompletePractice

Description

The kernel construct is extended with properties for containing activity spaces and competencies.

Generalizations

Layerl::Kernel

Attributes
N/A

Associations

competency : Competency [*] A collection of competencies defined in the kernel.
activitySpace : ActivitySpace [*] A collection of activity spaces defined in the kernel.
Invariant

-- All input and out alphas of the activity spaces are available within the
-- kernel or its bse kernels.
activitySpace->forAll (as | as.input->forAll (i | self.allAlphas ()->includes (i)
)

and
as.output->forAll (o | self.allAlphas ()->includes (o)))

and
-- The reached states of the activity spaces’ completions criteria are possible
-- states of the activity spaces’ output alphas.
activitySpace->forAll (as | as.completionCriterion.reachedState (rs |
as.output.stateGraph.state->includes (rs)))

and
-- The required competencies of the activity spaces are available within the
-- kernel or its base kernels.
activitySpace->forAll (as | as.requiredCompetency->forAll (rc |
self.allCompetencies ()->includes (rc)))

and
-- The competencies within the kernel have unique names.
self.competency->forAll (cl, c2 | cl <> c2 implies cl.name <> c2.name)

and
-- The activity spaces within the kernel have unique names.
self.activitySpace->forAll (al, a2 | al <> a2 implies al.name <> a2.name)

Essence, Version 1.0 63

Additional Operations

-- All activity spaces within the kernel or its base kernels.
Kernel::allActivitySpaces () : set(ActivitySpace)

activitySpace->union (baseKernel->collect (bk | bk.allActivitySpaces ())
-- All competencies within the kernel or its base kernels.
Kernel::allCompetencies () : set(ActivitySpace)

competency->union (baseKernel->collect (bk | bk.allCompetencies ())

Semantics

A kernel can contain not only alpha and alpha associations, but also activity spaces and competencies.

9.3.3.11 Pattern
Package: Layer3-CompletePractice

Description

A pattern is a definition of a pragmatic relationship among elements in a practice.

Generalizations

N/A

Attributes

kind : String [1] A description of the what kind of pattern the element defines.
description : String [1] A description of the pattern.

Associations

activity : Activity [*] The activities participating in the pattern.
activitySpace : ActivitySpace [*] The activity spaces participating in the pattern.
alpha : Alpha [*] The alphas participating in the pattern.
workProduct : WorkProduct [*] The work products participating in the pattern.
state : State [*] The states participating in the pattern.
Invariant

true

Semantics

Pattern is a general mechanism for defining a structure in a practice. It has a type which describes what kind of pattern it
is, like a role or a phase. Typically, the pattern references other elements in the practice. For example, a role may be
defined by referencing required competencies, having responsibility of work products, and participation in activities.
Another example could be a phase which groups activity spaces that should be performed during that phase.

9.3.3.12 Practice

Package: Layer3-CompletePractice

Description

The practice construct is extended with properties for containing activities, activity spaces, activity manifests, and
competencies.

Generalizations

Layer2::Practice

64 Essence, Version 1.0

Attributes
N/A

Associations

activity : Activity [*] A collection of activities defined in this practice.
activitySpace : ActivitySpace [*] A collection of activity spaces defined in this practice.
activityManifest : ActivityManifest [*] A collection of activity manifests defined in this practice.
competency : Competency [*] A collection of competencies defined in this practice.
skill : Skill [*] A collection of skills defined in this practice.

pattern : Pattern [*] A collection of patterns defined in this practice.
Invariant

-- The predecessors of an activity are available within the pracice, its base
-- practices, or its base kernels.
activity->forAll (a | a.predecessor->forAll (p | self.allActivities ()->includes
(»)))
and
-- The activities and the activity spaces associated by the activity manifests of
-- the practice are all available within the practice, its base practices, or its
-- base kernels.
activityManifest->forAll (am | am.activity-forAll (a | self.allActivities ()-
>includes (a)) and self.allActivitySpaces ()->includes (am.activitySpace))
and
-- All activities’ input and output work products and input and output alphas are
-- available within the practice, its base practices, or its base kernels.
activity->forAll (a | a.inputWorkProduct->forAll (iwp | self.allWorkProducts () -
>includes (iwp))
and
a.outputWorkProduct->forAll (owp | self.allWorkProducts ()->includes (owp))
and
a.inputAlpha->forAll (ia | self.allAlphas ()->includes (ia))
and
a.outputAlpha->forAll (oa | self.allaAlphas ()->includes (oa)))
and
-- All reached states of the activities’completion criteria are included in the
-- activities’ output alphas possible states.
activity->forAll (a | a.completionCriterion.reachedState (rs |
a.outputAlpha.stateGraph.state->includes (rs)))
and
-- The activities’ required competencies are available within the practice, its
-- base pracices, or its base kernels.
activity.requiredCompetency->forAll (rc | self.allCompetencies ()->includes (rc))
and
-- The activities’ required skills are available within the practice, its base
-- pracices, or its base kernels.
activity.requiredSkill->forAll (rs | self.allSkills ()->includes (rs))
and
-- The patterns’ activity spaces, activities, alphas, and work products are
-- available within the practice, its base practices, or base kernels.
pattern->forAll (p | p.activitySpace->forAll (as | self.allActivitySpaces ()-
>includes (as))

p.actii?iy->forAll (a | self.allActivities ()->includes (a))
p.alph:?fforAll (a | self.allAlphas ()->includes (a))
p.workgggduct->forAll (wp | self.allWorkProducts ()->includes (wp)))
-- Allazgtivities within the practice have unique names.
self.a:;évity->forAll (al, a2 | al <> a2 implies al.name <> a2.name)

Essence, Version 1.0 65

-- All activity spaces within the practice have unique names.
self.activitySpace->forAll (asl, as2 | asl <> as2 implies asl.name <> as2.name)
and
-- All competencies within the practice have unique names.
self.competency->forAll (cl, c2 | cl <> c2 implies cl.name <> c2.name)
and
-- All skills within the practice have unique names.
self.skill->forAll (sl, s2 | sl <> s2 implies sl.name <> s2.name)

Additional Operations

-- All activity spaces within the practice, its base practices, and base kernels.
Practice::allActivitySpaces () : set(ActivitySpace)

activitySpaces->union (basePractice->collect (bp | bp.allActivitySpaces () -
>union (baseKernel->collect (bk | bk.allActivitySpaces ()))

-- All activities within the practice, its base practices, and base kernels.
Practice::allActivites () : set(Activity)

activity->union (basePractice->collect (bp | bp.allActivities ())

-- All competencies within the practice, its base practices, and base kernels.
Practice::allCompetencies () : set(Competency)

competency->union (basePractice->collect (bp | bp.allCompetencies ())

-- All skills within the practice, its base practices, and base kernels.
Practice::allsSkills () : set(Skill)

skill->union (basePractice->collect (bp | bp.allSkills ())

Semantics

A practice could contain not only alphas, alpha associations, alpha manifests, and work products, but also activities,
activity spaces, activity manifests, competencies, and skills.
9.3.3.13 RequiredCompetency

Package: Layer3-CompletePractice

Description

A required competency states which competency level is needed to perform an activity.

Generalizations
N/A

Attributes
N/A

Associations

requiredLevel : CompetencyLevel [1] The required level.
requiredCompetency : Competency [1] The required competency.
Invariant

-- The competency level is included the competency definition.
self.requiredCompetency.possibleLevel->includes (self.requiredLevel)

Semantics

An activity fills an activity space that requires a competency. The specific competency level within that competency the
particular activity requires is expressed by a required competency.

66 Essence, Version 1.0

9.3.3.14 RequiredSkill
Package: Layer3-CompletePractice

Description

A required skill states which skill level is needed to perform an activity.

Generalizations
N/A

Attributes
N/A

Associations

requiredLevel : SkillLevel [1] The required level.
requiredSkill : Skill [1] The required skill.
Invariant

-- The competency level is included the competency definition.
self.requiredSkill.possiblelLevel->includes (self.requiredLevel)

Semantics

To perform an activity successfully, a collection of skills is required. For each of these skills the necessary level is stated.

9.3.3.15 Skill

Package: Layer3-CompletePractice

Description

A skill describes the ability to use one's knowledge effectively in execution.

Generalizations

N/A

Attributes

name : String [1] The name of the skill.

briefDescription : String [1] A short description of what the skill is.

icon : GraphicalElement [1] The icon to be used when presenting the skill.

Associations

possibleLevel : SkillLevel [*] A collection of levels defined for this skill.
concernType : AreaOfConcern [0..1] The area of concern the skill belongs to.
Invariant

-- The possible skill levels are distinct
self.possibleLevel->forAll (pll, pl2 | pll <> pl2 implies pll.level <> pl2.level)

Semantics

A skill is a learned power of doing something effectively. In contrast to Competencies, a skill is more tangible and can
possibly be proven by some certificate. Examples for skills include “Communicating in English”, “Programming in
Java”, or “Using version control systems”.

Essence, Version 1.0 67

A skill defines a sequence of skill levels. Typically, the level ranges from 0 — no skill to 5 — excellent.

9.3.3.16 SkillLevel
Package: Layer3-CompletePractice

Description

A skill level defines a level of skill someone is in a subject.

Generalizations

N/A

Attributes

name : String [1] The name of the skill level.

briefDescription : String [1] A short description of what the skill level is.

level : Integer [1] A numeric indicator for the level, where a higher number means more/better

skill.

Associations
N/A

Invariant

true

Semantics

Skill levels are used to create a range of abilities from poor to excellent skills. While a skill describes what abilities are
needed, such as “Programming in Java” or “Communicating in English,” a skill level adds a qualitative grading to them,
such as “beginner,” “average,” or “excellent.”

9.3.4 Layer4-MethodAndLibrary

The intention of layer 4 is to provide facilities to compose methods out of practices. The elements and their relationships
are presented in the diagram shown in Figure 19. A detailed definition of each of the elements is found below.

Layer3-CompletePractice::Practice

*k

Library]
+practice "
+name +includedPractice| 1.
+icon
+hriefDescription
* Method
+method | +name
+icon
+brigfDescription

Figure 19 — Layer 4 elements

9.3.41 Library
Package: Layer4-MethodAndLibrary

68 Essence, Version 1.0

Description

A library includes a collection of practices and methods.

Generalizations

N/A

Attributes

name : String [1] The name of the library.

icon : GraphicalElement [1] The icon to be used when presenting the library itself.
briefDescription : String [1] A short description of what the library captures.

Associations

practice : Practice [*] The practices contained in the library.
method : Method [*] The methods contained in the library.
Invariant
-- The practices included in a method are available within the library.
method.includedPractice->forAll (ip | self.practice->includes (ip))
and

-- The methods have unique names.

method->forAll (ml, m2 | ml <> m2 implies ml.name <> m2.name)
and

-- The practices have unique names.

practice->forAll(pl, p2 | pl <> p2 implies pl.name <> p2.name)

Semantics

A library contains elements relevant for a specific subject or area of knowledge, like sofiware development. The elements
contained in the library are practices and methods to be used in that area.

9.3.4.2 Method
Package: Layer4-MethodAndLibrary

Description

A Method describes how an endeavor is run.

Generalizations

N/A

Attributes

name : String [1] The name of the method.

icon : Graphical Element [1] The icon to be used when presenting the method.
briefDescription : String [1] A short description of the method.

Associations

includedPractice : Practice [1..*] The composed practices making up the method.

Invariant

true

Essence, Version 1.0 69

Semantics

A method is a composition of practices forming a (at the desired level of abstraction) complete description of how an
endeavor is performed. A team’s method acts as a description of the team’s way-of-working and provides help and
guidance to the team as they perform their task. Note that a method does not add any substantial information to a
composition of practices, but only a name and a description. The description is supposed to explain for which purpose
and level of abstraction the composition of practices is suitable.

Different methods, i.e. different compositions of practices, are created addressing:
e A particular size or style of a software engineering endeavor.
e Aparticular style or type of development.
e A nparticular risk or set of circumstances.

Pre-built methods, i.e. methods provided in a library and not developed by the team itself composing a collection of
practices, provide a set of “starter packs” for teams wishing to adopt a particular methodology or approach. These
methods can be updated to describe how a team would like to apply them; they can also be composed with additional
practices to specialize a method even further.

When the endeavor is initiated, instances of the alphas and work products defined in the selected method are created
corresponding to the actual occurrences the team is working with. These instances change states based on the team’s
actions. A more thorough description of the performance of a method is found in Section 9.5.

9.4 Composition

9.4.1 Introduction

The main purpose of composing practices is to define a method. This method could be used in endeavors developing
software, although other purposes and domains are also possible.

In this section, we present what it means to compose two practices to form a new practice. This practice may in its turn
be composed with other practices and eventually the result can be used as a method describing the performance of a
software engineering endeavor.

First we define a simple algebra for composition of graphs of instances and links of classes and associations in the
metamodel. Then, we use this algebra to define what we mean by composition of practices, i.e. merging two graphs of
instances of the constructs in the kernel language, or instances of the classes in the metamodel. We also provide some
examples of practice composition.

9.4.2 Graph Algebra

The algebra consists of three operations that each operate on instance models of the metamodel, i.e. graphs of instances
and links.

The constructs are:
e P (x) —variable definition
e P [x <- yl —renaming
e P + Q-—merge

where P and Q are graphs of instances and links. Each of these operations is described below.

9.4.2.1 Variable Definition

A variable definition, P (x), defines a named variable, x, (a placeholder) in a graph, P. The variable is to be filled, i.e.
merged, either with an instance of a class in the metamodel, like an activity or an alpha, or with a link between two
instances, i.e. an instance of an association in the metamodel. The variable may occur in several places within P, and all
of them will be merged with the same instance.

70 Essence, Version 1.0

In the trivial case, the variable is independent of the other elements in P, i.e. the variable has no relationships to other
elements in P. However, in general the variable is inserted into the structure of P. The different options are described
below.

9.4.2.1.1 Add Instance

The variable defines where an instance of a class in the metamodel is to be inserted into P. The variable may have links
to other instances.

steer project @ Ackiviky <<Mariable ==
plan : Wtk Product

+predecessar

+predecessar

guide tearn : Ackivity

Figure 20 — A variable called “plan” which is to be of type Work Product is added and linked to an
already existing Activity

9.4.2.1.2 Add Link

A second possibility is that the variable defines a link of an association in the metamodel between two instances in P, i.e.
the variable is to be merged with a link in the other graph. Merging a variable with a link, which has the same name and
type as the variable, will result in a graph where the variable has been replaced by the corresponding link.

skteer project © Ackiviky

+predecessor
< <Variable > >

+predecessor

quide keanm : Ackivity

Figure 21 — A variable is a link between two existing instances

9.4.2.1.3 Insert Instance on Link

A third option is to insert a variable representing an instance of a class onto a link, i.e. to insert the variable between two
linked instances. This is accomplished by replacing the link with two links and a variable representing the instance. The
two links must be of the same type and have the same name as the original link.

Essence, Version 1.0 71

steer project @ Ackivity

skeer project @ Ackivity

L4 +predecessor
+prpdecessor +predecessor
<<Yariable ==
evaluate resulks ; Ackiviey
+predecessor
+predecessar

quide project @ Ackivity

quide bearn ; Ackiviky

Figure 22 — A variable is inserted onto a link defined in the left graph resulting in the right graph

9.4.2.2 Renaming

A rename operation, P [x <- yl, replaces all occurrences of the name ‘x’ within P with the name ‘y’ regardless of
where in P the name is used.

+
+Z

+X +7

+350) +Z0()

Figure 23 — After applying the [X <- Z] operation on the structure to the left, all occurrences of “xX”
in the diagram to the left are replaced with “z” in the diagram to the right

9.4.2.3 Merge

A merge of two graphs, A + B, results in a new graph where instances of the same type and with the same name are
merged into one instance containing the composition of the two instances’ contents.

A + B =
let
ac = graphCopy (A)
bec = graphCopy (B)
ai = allInstances (ac)
bi = allInstances (bc)
in
Vy e bi . dx € ai : x = y - merge (x, y, ai)

merge (a, b, c) =
Vy € b.contents . dx € a.contents : x
A

Vy € b.contents . —dx € a.contents

y — manuallyMerge (x, y)

b

= y — addElement (a.contents, y)

72 Essence, Version 1.0

A
Vy € b.relationships . Jdx € a.relationships : x = y — DO NOTHING
A

Vy € b.relationships . —Jdx € a.relationships : x =y —
let
ob = y.otherEnd (b)
in
dz € ¢ : ob = z > addElement (a.relationships, mk-Link (y.type, y.name, a,
z))

—dz € ¢ : ob = z > addElement (a.relationships, mk-Link (y.type, y.name,
a, ob)

graphCopy (g) =
return a copy of the graph (instances and links) reachable from g

allInstances (g) =
return a set of all instances reachable from g

manuallyMerge (a, b) =
the merge of primitive types, like strings and icons, is not predefined and must
be performed manually

addElement (s, e) =
add the element e to the set s

The operation “mk-* is used to create a new instance of a metaclass or a metaassociation.

9.4.3 Required Primitive Operations

In the metamodel, the following operations can be applied to all elements, i.e. they are defined in each class and each
association:

e type — returns the type (class) of the element
e name — returns the name of the element
The following operations can be applied to all instances of classes, i.e. they are defined in each class:
e contents — returns all contained elements, like operations and attributes
e relationships — returns all outgoing relationships
The following operation can be applied to all links, i.e. it is defined in each association:

e otherEnd (o) — returns the element connected to the link which is opposite to the element, o, also connected to
the link

9.4.4 Additional Definitions in the Algebra

The merge operation is both commutative and associative:

P+Q+R=(P+Q) +R a renaming operation may have to be performed
P+Q=0Q+ P a renaming operation may have to be performed

The following define obvious abbreviations that may be used to reduce the size of expressions in the algebra.

P (x, y) = (P (x)) (y)
P[I[x<-y,u=<-v] = (PI[x<-1v])[ucx<-vl]

Essence, Version 1.0 73

Equivalence (=) between two elements means:

e the elements are instances of classes or links of associations in the metamodel — the two elements have the same
name, the same type, and their contained elements are equivalent, but the two elements are distinct

o the clements are texts, integers, unlimited naturals, or icons — the two elements represent the same value, i.c.
they are treated to be the same

9.4.5 Composition of Practices

Now, we can define the meaning of composing two practices using the algebra presented above. We start by defining the
compose operation. Then, we provide a simple example when composing two practices.

Note, this operation can be used to compose any elements of the same type being the root nodes of graphs, like practices
and kernels.

9.4.5.1 Definition of the Compose Operation

A composition of two elements (like practices), compose (P, Q, aName), results in a new element of the same
type as the two named aName. The content of the new element is a merge of the elements contained in the two graphs
defined by the two original elements.

compose (x, y, n) =
x.type = y.type > (x [x.name <- n]) + (y [y.name <- n])

9.45.2 Applying the Compose Operation
The composition of two practices is done in a sequence of steps.

We start (if needed) by introducing variables, i.e. placeholders, into the structure of one or both of the two practices,
where elements of the other practice are to be inserted. This may introduce variables as well as new links into the
structure of the practice. The name of a variable should be the same as the name of the element in the other practice to be
inserted into the variable.

Since the merge is based on equivalence, i.e. the names and the types should be the same, we have to ensure that no
elements of the same type have the same name and should not be merged. We therefore continue (if necessary) by
renaming all elements that have the same name but are not to be merged. Furthermore, elements that should be merged
are renamed so they have the same name. We also have to consider the variables and the elements to be inserted into
(merged with) these variables.

Finally, the composition is made as defined by the compose (.) function above. The two input practices are renamed
to the provided name and then the merge of the two is performed. Note, the two original practices are not affected by the
composition.

9.4.6 Examples

9.4.6.1 Simple Composition

In this example, we have two practices: [lterative Planning and lterative Assessment. (Neither of them fulfills the
definition of being a practice, but they are sufficient for the example.) The composition of the two will result in a third
practice: Iterative Development. Obviously, the result in this example is not the full Iterative Development practice. Here,
it is only used to exemplify the composition of two practices.

In this example, we have excluded alphas and activity spaces and therefore also activity manifests and alpha manifests.
We assume that the former are defined in a kernel and hence will be the same in both practices and obviously be merged.
The latter, i.e. the manifest instances, will, by definition, be unique for each practice and hence will not be merged.

Iterative Planning — consists of two activities: Agree Iteration and Guide Team. Each of them being the predecessor of
the other. Agree Iteration uses the Iteration Plan work product.

74 Essence, Version 1.0

~+ackivity - -~
agreelkeration @ Ackivik

+predecessor

+predecessor

iterativePlanning : Practice +activity | quideTeam : Activit

+oukputivorkProduct

erkProduterationPlan : workProduct

Figure 24 — The structure of the [Iterative Planning practice

Iterative Assessment — consists of one activity: Evaluate Results and one work product: Iteration Assessment.

+ackivit
= evaluateResult ; Activity

terativedssessment : Practice

+oukputitorkProduct

+workProdu

'i'teratiun.ﬂssessment » orkProduct

Figure 25 — The structure of the Iterative Assessment practice

The composition of the two practices is performed in two steps. First, we need to enable the insertion of the Iteration
Assessment activity into the predecessor cycle defined in the Iteration Planning practice. If we do not do this, the
Iteration Assessment activity will be performed independently of the other two activities. Second, the actual composition
is made, which will merge elements with the same name and types, and result in a new practice.

We start by inserting a variable into the Iteration Planning practice. We call this variable Evaluate Results (the same as
the name of the activity we are to insert) and it is of type Activity. The variable is inserted where the evaluation at the end
of an iteration is to take place, namely on the Predecessor link from the Agree Iteration activity to the Guide Team
Activity. (Formally, the link is replaced by two links of the same kind, directed in the same way as the original one, and
with the inserted variable in between.)

Essence, Version 1.0 75

Factivity agreelteration : Ackivity

+predecessor ipredecessar

+activity < <Wariable = =
evaluateResult : Ackivity

+predecessor
iterativePlanning : Practice +activity

guideTeam : Ackivity

“+oukputiWarkProduck

“workProdurt -
iterationPlan ¢ WorkProduct

Figure 26 — A variable is inserted between Agree Iteration and Guide Team. The variable has the same
name as the activity to be inserted

Now, we continue with the second step and do the actual composition of the two practices. First, the two practices are
renamed during the composition; we call them Iterative Development. Then, all elements in these two practices with the
same names and types are merged. In this case, the two practices have the same name and will be merged, and the
variable Evaluate Results in the Iteration Planning practice and the activity with the same name in the Iteration
Assessment practice will also be merged.

“+workProduftterationPlan : WorkProduct

+outputiorkProduct

Factivity | aqreelteration : Ackivity

+predecessor

+predecessor

iterativeDevelopment : Practice +ackivity | ayaluateResult : Activity

+predecessor

+activity | quideTeam @ Activit

“+outpufwarkProduct

+workProdutierationfssessment : WorkProduct

Figure 27 — The structure of the resulting practice

76 Essence, Version 1.0

Hence, the formal expression for the composition is:

compose (Iterative Planning, Iterative Assessment, ITERATIVE DEVELOPMENT)

9.5 Dynamic Semantics

Since the language defines not only static elements like Alphas and Work Products, but also states associated with them,
it can not only be used to express static method descriptions, but also dynamic semantics. Using the states of the single
Alphas and their constituent Work Products, the overall state of a software engineering endeavor can be expressed. Based
on this, denotational semantics can be defined for a function that supports a team in the enactment of a software
engineering endeavor, by using the current state and a specification of the desired state to create a “to-do” list of activities
to be performed by the team.

In a large or complex endeavor this function may be provided by a specialist tool. In smaller endeavors, where the
overhead of tool support cannot be justified, the function represents a manual recipe that can be followed to determine
guidance on how to proceed.

9.5.1 Domain classes

9.5.1.1 Recap of Meta-modeling Levels

As stated in Section 9.2.1, the Essence language is defined as a set of constructs which are language elements defined in
the context of a meta-modeling framework. In this framework all the constructs of the language, as described in Section
9.3, are at level 2.

e Level 3 — Meta-Language: the specification language, i.e. the different constructs used for expressing this
specification, like “meta-class” and “binary directed relationship.”

e Level 2 — Construct: the language constructs, i.e. the different types of constructs expressed in this specification,
like “Alpha” and “Activity.”

e Level 1 — Type: the specification elements, i.e. the elements expressed in specific kernels and practices, like
“Requirements” and “Find Actors and Use Cases.”

e Level 0 — Occurrence: the run-time instances, i.e. these are the real-life elements in a running development
effort.

A Method Engineer using the Essence language to model the Practices and its associated Activities, Work Products etc.,
would work at level 1. For instance, to describe an agile Practice like Scrum the Method Engineer would define activities
such as “Sprint Planning Meeting” and “Daily Scrum”, and work products such as “Sprint Goal” at level 1. This is
exactly analogous to a Software Engineer using the UML language (also described as constructs at level 2) to model an
order processing system by define classes such as “Customer, “Order” and “Product” and use cases such as “Place an
Order” and “Check Stock Availability” at level 1.

A team using Scrum on a project would be working at level 0. The project team would hold “Sprint Planning Meetings”
and “Daily Scrums” and each would be a level 0 instance of the corresponding activity at level 1, and the goal set for
each Sprint would be a level 0 instance of the “Sprint Goal” work product defined at level 1. This is exactly analogous to
the creation of Customers “Bill Smith” and “Andy Jones” and products “Flange” and “Grommet” at level 0 in the
executing order processing system.

9.5.1.2 Naming Convention

In order to define the dynamic semantics it is necessary to refer to the inhabitants of levels 1 and 0 as well as those of
level 2. In order to make it clear at which level a named term belongs, we use the following naming convention:

e X (an unadorned name) is a language Construct at level 2 as defined in Section 9.3, such as Alpha, Practice,
Activity, Work Product.

e my X (prefixed) is a Type at level 1 created by instantiating X. So if X is Activity, my_Activity could be Sprint
Planning Meeting.

Essence, Version 1.0 77

e my X instance is an Occurrence at level 0 by instantiating my X. So if X is Activity, my_ Activity instance
could be the XYZ Project Sprint Planning Meeting no. 5 held on the 16™ July 2012.

This naming convention is used in the type signatures of functions of the dynamic semantics, so that it is clear to which
level of the framework the terms used in the function signature belong. Consider the function guidance which returns
a set of activities to be performed to a take an endeavor forward to the next stage. The type signature of this function is:

guidance: (my Alpha, State)* — (my Alpha, my Activity*)¥*

The terms my Alpha and my Activity in this type signature have names prefixed with my and so are at level 1.
The term State, on the other hand, has an unadorned name and so is at level 2. Notice here that we allow a function
type signature to use elements from different levels of the meta-modeling framework.

9.5.1.3 Abstract Superclasses

To ensure that occurrences at level 0 are endowed with the attributes they need to support the dynamic semantics, we
define a set of abstract superclasses at level 1 from which the types defined at level 1 are subclassed. For instance the
superclass my_Alpha ensures that every Alpha occurrence at level 0 will have attributes “instanceName”, “currentState”,
“workProductlnstances” and “subAlphalnstances”. These superclasses are named consistently with the naming

convention described above.

The relationships between these superclasses and the classes created from the level 2 constructs in shown in Figure 28 —
The Essence language framework.

Level 2 WorkProduct
s N
% f‘ ~
Use Case
Level 1 my_WorkProduct 2
narrative
1
T
1
Level O Withdraw Cash
|:| Defined in the Essence language I:l Instantiation Sub-classing
1 (lower box is an (lowerboxis a
- d instance of the sub-class ofthe
|:| Defined by a user of the Essence language |:| et hinet e

Figure 28 — The Essence language framework

9.5.1.3.1 my_Alpha

The superclass to all level 1 types instantiated from the level 2 construct “Alpha”, i.e. the Alphas in some Kernel (such as
“Requirements”) or Practice as well as to Sub-Alphas added by a particular Practice (such as “Use Case”).

Attributes
instanceName : String [1] The name of an occurrence (e.g., Requirements for the XYZ Project)
currentState : State [1] A pointer to the current State of an occurrence (e.g., to the state

“Coherent”)
myWorkProductlnstances : my WorkProduct The set of WorkProducts this alpha is manifested by.

[*]
mySubAlphalnstances : my_ Alpha [0..*] A set of Sub-Alphas from AlphaContainment relationships.

78 Essence, Version 1.0

9.5.1.3.2 my_WorkProduct

The superclass to all level 1 #ypes instantiated from the level 2 construct “Work Product”, i.e. to all templates
representing physical documents used in the software engineering endeavor, such as “Use Case narrative”.

Attributes
instanceName : String [1] The name of an occurrence (e.g., Use Case Narrative for Withdraw Cash)
current levelOfDetail : State [1] A pointer to the current State of an occurrence (e.g., to the state “Not

Started”)

9.5.1.3.3 my_Activity

The superclass to all level 1 #ypes instantiated from the level 2 construct “Activity”, i.e. to all templates describing work
items.

Attributes

instanceName : String [1] The name of an occurrence (e.g., Define and agree Use Case
“Withdraw Cash”)

myAlphalnstances : my Alpha [*] A pointer to the set of Alphas that this Activity is concerned with
(either by using it as reference or doing work that will change its
state).

myWorkProductlnstances : my_WorkProduct[*] A pointer to the set of Work Products used by this Activity.

9.5.2 Operational Semantics

In this section we describe and illustrate the operational semantics. This covers how the level 0 model is created, how the
state of the endeavor is tracked in the model and how the model can be used to give advice based on how to progress the
state of the endeavor. For the last of these we provide a formal denotational semantics.

9.5.2.1 Populating the Level 0 Model

Generally, the appropriate Alpha instances and associated Work Product instances are created as soon as the respective
Alpha is considered in the endeavor. Some may exist right from the start of the endeavor (such as the Alpha instances for
Stakeholders or Requirements), while others may be created later, at the appropriate point in the conduct of a practice.
This is usually the case for subAlpha instances, which are instantiated as needed through the endeavor. The model of a
practice is used as the basis for instantiating the appropriate sets of Alpha instances and associated Work Product
instances, using the my_ AlphaManfests defined for the my Practice as templates. Although the mechanisms of
instantiation and updating Alpha instances and their associated Work Product instances can be formalized using
computational semantics, it is not an automatic process and must be triggered explicitly by the team.

A team is also free to create instances in their model that do not derive by instantiating from Practice templates, and thus
tailor the use of a Practice or even depart from it to create a partially or completely customized approach.

9.5.2.2 Determining the Overall State

Determining the overall state of the endeavor is done by determining the states of each individual Alpha instance in the
endeavor. This is done using the checkpoints associated with each state of the respective state graphs; and the state is
determined to be the most advanced in the state graph consistent with the currently met checkpoints. This means the state
that has:

1. all currently fulfilled checkpoints met; and
2. no outgoing transition to a state that has also all currently fulfilled checkpoints met.

This is illustrated in Error! Reference source not found.. Here the most advanced state of Software System “XYZ”
consistent with the checkpoints that have been met (shown as ticked) is “Useable”.

Essence, Version 1.0 79

Alpha State Graph Check Points

Software Architecture
System Selected
“xyz”
Demonstrable
Useable

The criterizto be used when selecting the architecture have been sgresd an.
Hardware platforms have been identified

P ing languages and te to been selected
System boundsryis known

Significant decisions about the organizstion of the system have been mads
Buy, build and re-use dacisions have been made.

Key architactural char:
The system can be exercisedand its performance czn be measured.

Critical hardware configurstions have been demonstrated.

Critical interfaces have been demonstrated,

The integration withotherexisting systems has baen demonstrated

The relevant stakeholders agree that the demonstratedarchitscture is approprists

The system can ba oparated by staksholdars who Use it
The functionality provided by the system has been tested.

The performance of the system is scceptable to the staksholders.
Defect levels are acce ptable to the staksholders.

The systam isfully documented

Release content isknown.

R S TN

The added valus provided by the system is clesr.

=ndather user =z avaiiable.
The repr the system asfit-f

The stakeholder representstivals) want(s) to make the system aperstionsl
Operational supportisin place.

&

The system hasbeen mads available toths stzkeholdersintended touse it
Operational At least one example of the system is fully operational

The system isfully supportedto the sgreedservice levels.

The system has been replaced or discontinued.
. The system is no longer supported
Retired omias
There ar no “afficial” stakeholders whostill uss the system
Updatesto the systemwill na langer be produced

Figure 29 — Determination of State using Check Points

The determination of Alpha instance states can happen at any point in time since evaluating the checkpoints is a manual
activity. When checkpoints are evaluated the result can be that an Alpha instance regresses, its current state being set
back to some earlier state of its lifecycle. This happens if re-evaluation determines that a checkpoint previously thought
to have been met is now deemed not to have been met.

9.5.2.3 Generating Guidance
In an actual running software engineering endeavor, a team will want to get guidance on what to do next.

Once the overall state of the endeavor is determined, the model can be used to generate such advice. This can be
understood as a guidance function that takes a set of pairs of (Alpha instance and target State) as its argument and returns
a set of newly instantiated Activities: a “to-do” list to be performed by the team. This function is invoked with an actual
argument consisting of a set of pairs, each pair consisting of a my_Alpha_instance (at level 0) and a my_State (at level
1). For each pair the function returns guidance on how to progress each my_ Alpha instance to its target state my_State.
This guidance is of the form of a set of newly instantiated activities (at level 0) for each my_Alpha_instance, constituting
a to-do list to be performed by the team to advance its state. The essential idea is to assemble the to-do list by examining
each Alpha instance given to the function and finding those activities that have the target state of that Alpha instance
among its completion criteria.

Note that an Essence model does not specify how the team works on a set of activities. This is the dictated by the
policies, rules or advice of the practices being used on the endeavor. These may require or suggest that certain activities
should be prioritized, done in a particular sequence, divided among sub-teams, and so on. The team uses its expertise in
the practices to work out exactly how to perform the activities required. Nor is there any ultimate guarantee that the team
will follow the advice or perform the suggested activities competently: in that sense the model is an “open loop” control
system. However, regular re-evaluation of the checkpoints and the consequent re-setting of the Alpha instance states will
provide feedback to the team on whether or not their work is advancing as hoped.

Several other functions can be defined to measure the progress and health of the endeavor, for instance to determine
whether the right set of my Alpha Instances and my WorkProduct Instances is in place, or to determine whether the
endeavor has reached its final state. These have not been defined here.

9.5.2.4 Formal definition of the Guidance Function

In this section, we provide a formal description of the operational semantics in terms of the function guidance. This

80 Essence, Version 1.0

function takes a set of pairs of (Alpha instance and target State) as its argument and returns a set of to-do lists, one for
each Alpha instance and target State provided to the function.

The essential idea is to compile the to-do lists by examining each Alpha instance given to the function and finding those
activities that have the target state of that Alpha instance among its completion criteria. However, the target state
specified for an Alpha instance may not be the next state in the state graph of the Alpha, and so a function
statesAfter is used to find the intermediate states. The to-do list generated consists of the activities required to
progress the Alpha instance through all these states in order to reach the specified target.

First we specify the statesAfter function. Suppose that a state graph has a sequence of states Sy, Si, S,, S;. If
statesAfter is called with (So, S;) it will return {S;, S,, S3}. In other words, all the states passed through to get to S3
but not including the starting state Sy This is easier to specify in terms of a function fullPath that generates the full
set of states including the starting state. So if fullPath is called with (S, S;) it will return {Sy, S;, S,, S3}.

statesAfter: (State, State) — State*
statesAfter (s,, s,) =
fullPath(s,, s,) - {s,}

fullPath: (State, State) — State*
fullPath (s,, s,) =

if ((s,.outgoingTransition = null) v (s, = s,)) {s:1}
else {s,} U fullPath(s,.outgoingTransition.target, s,)

We use this to specify the guidance function. Each (Alpha instance, target State) pair is taken in turn.

guidance: (my Alpha, State)* —» (my alpha, my Activity¥*)*
guidance (cas) =

let as € cas

in to do(as) U guidance (cas - {as})

The to_do function takes a single (Alpha instance, target State) pair and creates the set of activities that are required to
progress the Alpha instance to the required target State. This is done by finding those activity types that have the target
state or any intermediate state among its completion criteria. The function statesAfter is used to find the
intermediate states.

Note that the completion criteria (defined at level 1) are defined using activity types (at level 1). The function to_do
determines the set of activity types required for each Alpha instance.

As the to-do list is to be constructed as a set of new instantiated activities (at level 0) we use mk_w (o) to instantiate
(i.e., create an instance of) w at level 0. This is done by the function create instances. Each newly instantiated
level 0 activity stores the passed Alpha instance (a) as an element of its stored set of related Alpha instances,
myAlphalnstances (see Section 9.5.1.3).

to do: (my Alpha, State) — (my alpha, my Activity¥*)
to_do (a, o©) =
let ew = { w | (o.type € w.outputAlpha) A
(o’ e completionStates(w.completionCriterion) e J) A
(o6’ € statesAfter(a.currentState,c)) }
in (o, create instances(a, cw))

create instances: (my Alpha, Activity*) — my Activity*
create instances(a, cw) =

let w € cw

in mk w(a) U create instances(a, cw - {w})

Finally, we specify the function completionStates which is used by the to do function to determine the set of states
forming the completion criteria of an activity.

completionStates: CompletionCriterion* — State*
completionStates (ccc) =

Essence, Version 1.0 81

let cc € ccc and rs = cc.reachedState
in rs U completionStates(ccc - {cc})

9.6 Graphical Syntax

9.6.1 Specification Format

The concrete syntax of the language is organized in views. Each view provides notations for a subset of elements of the
language. Views are defined and used independently from abstract syntax layers. For example, a view capable of
representing elements from abstract syntax layers 1, 2 and 3 can be used to represent a language construct just containing
elements from abstract syntax layers 1 and 2. The view is allowed to represent just a part of the whole language
construct. In the same way, a view capable of representing just elements from abstract syntax layer 1 can also be used to
represent (parts of) the same language construct. It is considered correct to define and use other views than the ones
defined in this language specification.

The following views are defined in the graphical syntax:

visualize >

View 1: Alphas and their States Layer 1 - Core

¢ Alpha Structure Diagram

* State Graph Diagram

* Alpha Definition Card

Layer 2 - PracticeAndAlpha
View 2: Sub-Alphasand Work Products
* Alpha Hierarchy Diagram Layer 3 - CompletePractice
View 3: Activity Spaces and Activities Layer 4 - MethodAndLibrary

* Activity Space Hierarchy Diagram
* Activity Flow Diagram
Figure 30 - View to layer mapping overview

Moreover, the graphical syntax of each construct to be visualized is introduced in a separate section that provides a
description and symbol of the syntax. This section includes subsections for Style Guidelines and Examples when
applicable.

Given this, diagrams are introduced by listing the graphical nodes and links to be included in the diagrams. Each node
and link refers to the syntax specification of an individual element.

9.6.2 Relevant Symbols

Most of the constructs in the abstract syntax of the Kernel Language require a visual representation in terms of a symbol
for the purpose of being visualized. However:

e Some constructs are visualized in terms of complete diagrams and may not require a symbol, e.g. State Graph,
where the states of the state graph can be visualized in a diagram but where State Graph in itself does not require
any specific symbol.

e Constructs like Completion Criterion and Required Competency may not require symbols of their own but are
instead visualized textually only.

9.6.3 Default Notation for Meta-Class Constructs

The default notation for a meta-class construct in the abstract syntax is a solid-outline rectangle containing the name of
the construct’s type (level 1 in the abstract syntax). The name of the construct itself (level 2 in the abstract syntax) can be
shown in guillemets above the type name. Alternatively, if the meta-class construct defines its own distinct symbol, this

82 Essence, Version 1.0

symbol can be shown above the type name in the rectangle.

This provides a default and unique visualization of each meta-class construct in the abstract syntax.

Style Guidelines
e Center the name of the construct’s type in boldface.
e Center the name of the construct itself in plain face within guillemets above the type name, or alternatively:

e Include the symbol of the construct above the type name and aligned to the right.

Examples

«Alpha» C)(

Software System Software System

Figure 31 — Example visualizations of the Alpha meta-class construct and its Software System type

9.6.4 View 1: Alphas and their States

The following sections define relevant symbols for View 1: Alphas and the States. This view is thereby capable of
visualizing elements in abstract syntax layers 1, 2 and 3.

9.6.4.1 Alpha
An Alpha is visualized by the following symbol, either containing the name of the Alpha or with the name of the Alpha

placed below the symbol:

Figure 32 — Alpha symbol

name

Style Guidelines
o Center the name of the Alpha in boldface, either within the symbol or below the symbol.

Examples

Software System

Figure 33 — Software System Alpha

9.6.4.2 Alpha Association

An Alpha Association is visualized by a solid line connecting two associated Alphas. The line may consist of one or more
connected segments. The association line is adorned with the name of the association.

Essence, Version 1.0 83

name

Figure 34 — Alpha Association symbol

Style Guidelines
e Center the name of the Alpha Association above or under the association line in plain face.

e An open arrowhead >’ or ‘<’ next to the name of the association and pointing along the association line
indicates the order of reading and understanding the association. This arrowhead is for documentation purposes
only and has no general semantic meaning.

Software System

Examples

Figure 35 — Alpha Association between the Requirements Alpha and the
Software System Alpha, read as: “The Software System fulfills the Requirements.”

9.6.4.3 Kernel

A Kernel is visualized by a hexagon containing a cogwheel; either containing the name of the Kernel or with the name of
the Kernel placed below the symbol.

Ele

name
Figure 36 — Kernel symbol

Style Guidelines

e Center the name of the Kernel in boldface, either within the symbol or below the symbol.

84 Essence, Version 1.0

Examples

Software

Engineering

Figure 37 — Kernel for Software Engineering

9.6.4.4 State

A State is visualized by a rectangle with rounded corners containing the name of the State.

=

Figure 38 — State symbol

Style Guidelines

e Center the name of the State in boldface.
Examples

Milestones

Agreed

Figure 39 — Milestones Agreed State

9.6.4.5 Transition

A Transition is visualized by a solid line with an open arrowhead connecting two States. The line may consist of one or
more connected segments.

N
T

Figure 40 — Transition

Examples
-
Objectives

Agreed

. \L J

e ™)

Plan

Agreed

L J

Figure 41 — Transition from the Objectives Agreed State to the Plan Agreed State

Essence, Version 1.0 85

9.6.4.6 Diagrams

This section defines the graphical elements that may be shown in diagrams, and provides cross references where detailed
information about the concrete notation for each element can be found.

9.6.4.6.1 Alpha Structure Diagram

Table 8 — Graphical nodes in Alpha Structure diagrams.

Node Type Symbol Reference

Alpha Q Section 9.6.4.1 Alpha.

Table 9 — Graphical links in Alpha Structure diagrams.

Link Type Symbol Reference
Alpha Association Section 9.6.4.2 Alpha Association.
Examples

Refer to kernel examples.

9.6.4.6.2 State Graph Diagram
Table 10 — Graphical nodes in State Graph diagrams.

Node Type Symbol Reference

State [] Section 9.6.4.4 State.

Table 11 — Graphical links in State Graph diagrams.

Link Type Symbol Reference

Section 9.6.4.5 Transition.

\ 4

Transition

Style Guidelines
e Place the start state at the top of the diagram, and the stop state at the bottom of the diagram.

e Use transitions to visualize a logical sequence through states, from start to stop. Only visualize alternative
transitions when there are mutually exclusive state sets involved in the sequence from start to stop. Within a
specific sequence from start to stop, we may assume that any loop or alternation is permitted without visualizing
corresponding transitions.

86 Essence, Version 1.0

Examples

~
Objectives
Agreed
§ \L Y,
(N\
Plan
Agreed
. \L J
s N\
Code
Freeze
\ Y,
(L)
Assessed
. ¢ J
e N
Closed
§ J

Figure 42 — State Graph example

9.6.4.7 Cards

As a complement to the symbols and diagrams we use a card metaphor (as in 5x3 inch index cards) to visualize the most
important aspects of an element in the Kernel Language. A card presents a succinct summary of the most important
things you need to remember about an element. In many cases, all that a practitioner needs to be able to apply a kernel or

a practice is a corresponding set of cards.

In particular, cards are straightforward to manifest as physical entities (print them on paper) which makes them very
hands-on and natural for practitioners to put on the table, play around with, and reason about; all for the purpose to guide

practitioners in their way of working.

9.6.4.7.1 The Anatomy of a Card

A card is visualized as a solid-outline rectangle containing a mix of symbols and textual syntax related to the element.
The following is a basic anatomy although variations are allowed:

Essence, Version 1.0

87

<owner name (kernel or practice)> Card header
<element symbol and name> &
Card
right-hand-side
<additional symbols or a diagram> <textual descriptions/syntax> <
—
/
Card
left-hand-side

Figure 43 — A basic card anatomy to visualize an element

Style Guidelines

e Place the owner name in boldface at the top-right of the card and use a font with smaller size than for the
element name top-left.

9.6.4.7.2 Alpha Definition Card
An Alpha definition card is defined as follows:

e Card left-hand-side: State Graph Diagram for the Alpha.

e Card right-hand-side: Brief Description of the Alpha, as well as a listing of contents including Essential
Qualities, and contained elements (sub-Alphas or Work Products, if any).

88 Essence, Version 1.0

Examples

Q Software Engineering Kernel
Software System
- " \ A software system is a system made
Architecture
up of software, hardware, and data
Selected that provides its primary value by the
. a execution of the software.
Demonstrable Essential Qualities
) N7 ’ 1. Allimplementation units have
f Useable) adequate te.sts that.are ;.)assed
2. The system is organized in a
Al \ suitable structure
Ready 3. There are clearly defined
. T s interfaces between
f .) implementation units
Operational 4. There is minimal redundancy
/7 among implementation units
Retired Contents
L J N/A

Figure 44 — Software System Alpha Definition Card

9.6.5 View 2: Sub-Alphas and Work Products

The following sections define relevant symbols for View 2: Sub-Alphas and Work Products. This view is thereby capable
of visualizing elements in abstract syntax layers 2 and 3.

9.6.5.1 Work Product

A Work Product is visualized by the following symbol, either containing the name of the Work Product or with the name
of the Work Product placed below the symbol:

name

name

Figure 45 — Work Product symbol

Style Guidelines

e Center the name of the Work Product in boldface, either within the symbol or below the symbol.

Examples

Iteration Plan

Figure 46 — Iteration Plan Work Product

Essence, Version 1.0 89

9.6.5.2 Alpha Containment

An Alpha Containment is visualized by a solid line connecting a super- and a sub-Alpha. The line may consist of one or
more connected segments. The line is adorned with a filled diamond placed at the end of the line connecting the super-
Alpha; and with the multiplicity of the sub-Alpha placed near the end of the line connecting the sub-Alpha.

multiplicity

Figure 47 — Alpha Containment symbol
As an alternative, an Alpha Containment can be visualized by encompassing the sub-Alpha symbols within the super-
Alpha symbol.
Style Guidelines

e Arrange the line vertically with the super-Alpha on top and the sub-Alpha at the bottom, thereby visualizing a
top-down hierarchy.

e Ifthere are two or more sub-Alphas of the same super-Alpha, they may be visualized as a tree by being placed at
the same horizontal level and by merging the lines to the super-Alpha into a single segment.

e Visualizing a sub-Alpha multiplicity is optional.

Software System

L 2

Examples

1 0..*

1.*

Figure 48 — Software System super-Alpha and three sub-Alphas: Architecture, Component, and Test
with visualized multiplicities

9.6.5.3 Alpha Manifest

An Alpha Manifest is visualized by a solid line connecting an Alpha and a Work Product. The line may consist of one or
more connected segments. The line is adorned with a filled diamond placed at the end of the line connecting the Alpha;
and with the multiplicity of the Work Product placed near the end of the line connecting the Work Product.

multiplicity

4

Figure 49 — Alpha Manifest symbol

Note that this is the same symbol as the Alpha Containment symbol, however the symbols are discriminated based on
their context; that is, whether two Alphas are connected (Alpha Containment), or whether an Alpha and a Work Product

20 Essence, Version 1.0

are connected (Alpha Manifest).

As an alternative, an Alpha Manifest can be visualized by encompassing the Work Product symbols within the Alpha
symbol.

Style Guidelines

e Arrange the line horizontally with the Alpha to the left and the Work Product to the right, thereby visualizing a
left-to-right hierarchy.

e If there are two or more Work Products of the same Alpha, they may be visualized as a tree by being placed at
the same horizontal level and by merging the lines to the Alpha into a single segment.

e Visualizing a Work Product multiplicity is optional.

Software SystemX ¢

Examples

1 1.* 1
) SE— / /
Design
e Build Release
Model Description

Figure 50 — Software System Alpha and three Work Products: Design Model, Build, and Release
Description with visualized multiplicities

9.6.5.4 Practice

A Practice is visualized by a hexagon; either containing the name of the Practice or with the name of the Practice placed

below the symbol.

name
Figure 51 — Practice symbol

Style Guidelines

e Center the name of the Practice in boldface, either within the symbol or below the symbol.

Examples

Figure 52 — Scrum Essentials Practice

Essence, Version 1.0 91

9.6.5.5 Diagrams

This section defines the graphical elements that may be shown in diagrams, and provides cross references where detailed
information about the concrete notation for each element can be found.

9.6.5.5.1 Alpha Hierarchy Diagram

Table 12 — Graphical nodes in Alpha Hierarchy diagrams.

Node Type Symbol Reference
Alpha Q Section 9.6.4.1 Alpha.
Work Product Section 9.6.5.1 Work Product.
Table 13 — Graphical links in Alpha Hierarchy diagrams.
Link Type Symbol Reference
Alpha Containment See 9.6.5.2 Alpha Containment.
multiplicity
Alpha Manifest ® multiplicity See 9.6.5.3 Alpha Manifest.
Examples
.
L 2 1 1.*
Design . Release
Model Build Description
1 0..*

Architecture

92

1.*

Figure 53 — Alpha Containment and Alpha Manifest relationships of the Software System Alpha

Essence, Version 1.0

9.6.6 View 3: Activity Spaces and Activities

The following sections define relevant symbols for View 3: Activity Spaces and Activities. This view is thereby capable
of visualizing elements in abstract syntax layer 3.

9.6.6.1 Activity

An Activity is visualized by the following symbol, either containing the name of the Activity or with the name of the

Activity placed below the symbol:
name > >

name

Figure 54 — Activity symbol

Style Guidelines

e Center the name of the Activity in boldface, either within the symbol or below the symbol.

Examples

Sprint
Retrospective

Figure 55 — Sprint Retrospective Activity

9.6.6.2 Activity Space

An Activity Space is visualized by the following dashed-outline symbol, either containing the name of the Activity Space
or with the name of the Activity Space placed below the symbol:

Figure 56 — Activity Space symbol

Style Guidelines

o Center the name of the Activity Space in boldface, either within the symbol or below the symbol.

Examples

Specify the \)
Software ’

Figure 57 — Specify the Software Activity Space

9.6.6.3 Activity Manifest

An Activity Manifest is visualized by a solid line connecting an Activity Space and an Activity. The line may consist of
one or more connected segments. The line is adorned with a filled diamond placed at the end of the line connecting the

Essence, Version 1.0 93

Activity Space.

| 4

Figure 58 — Activity Manifest symbol

Note that this is the same symbol as the Alpha Containment and Alpha Manifest symbol, however the symbols are
discriminated based on their context; that is, whether two Alphas are connected (Alpha Containment), or whether an
Alpha and a Work Product are connected (Alpha Manifest), or whether an Activity Space and an Activity are connected
(Activity Manifest).

As an alternative, an Activity Manifest can be visualized by encompassing the Activity symbols within the Activity Space
symbol.

Style Guidelines

e Arrange the line horizontally with the Activity Space to the left and the Activity to the right, thereby visualizing
a left-to-right hierarchy.

e If there are two or more Activities of the same Activity Space, they may be visualized as a tree by being placed
at the same horizontal level and by merging the lines to the Alpha into a single segment.

Examples

Specify the \) *
Software ’
/7

Identify
Use Cases

Specify
Use Cases

Figure 59 — Specify the Software Activity Space and two Activities: Identify Use Cases and Specify Use
Cases
9.6.6.4 Activity Predecessor

An Activity Predecessor is visualized by a solid line connecting two Activity symbols. The line may consist of one or
more connected segments. The line is adorned with a filled triangular arrowhead placed at the end of the line connecting
the successor, that is, the opposite of the predecessor.

>

Figure 60 — Activity Predecessor symbol.

Style Guidelines

e Lines may be drawn using curved segments.

94 Essence, Version 1.0

Examples

Sprint Planning
Meeting

]

Daily Scrum

Sprint Review

D

Sprint
Retrospective

Figure 61 — Activity Predecessor among four activities in a Scrum Essentials practice

9.6.6.5 Competency

A Competency is visualized by a 5-point star symbol with the name of the Competency placed below the symbol:

name
Figure 62 — Competency symbol

Style Guidelines

e Center the name of the Competency in boldface below the symbol.

Examples

Leadership
Figure 63 — Leadership Competency

9.6.6.6 Diagrams

This section defines the graphical elements that may be shown in diagrams, and provides cross references where detailed
information about the concrete notation for each element can be found.

Essence, Version 1.0 95

9.6.6.6.1 Activity Space Hierarchy Diagram
Table 14 — Graphical nodes in Activity Space Hierarchy diagrams.

Node Type Symbol Reference
] \
Activity Space ! \ Section 9.6.6.2 Activity Space.
b
| /
/
Activity Section 9.6.6.1 Activity.

Table 15 — Graphical links in Activity Space Hierarchy diagrams.

Link Type Symbol Reference
Activity Manifest . See 9.6.6.3 Activity Manifest.
Examples

Refer to 9.6.6.3 Activity Manifest example.

9.6.6.6.2 Activity Flow Diagram

Table 16 — Graphical nodes in Activity Flow diagrams.

Node Type Symbol Reference

Activity Section 9.6.6.1 Activity.

Table - Graphical links in Activity Flow Hierarchy diagrams.

Link Type Symbol Reference

Activity Predecessor > See 9.6.6.4 Activity Predecessor.

Style Guidelines

e Arrange the Activity Predecessor arrow pointing from left-to-right or from top-to-bottom, except for loop-backs.

Examples
Refer to 9.6.6.4 Activity Predecessor.

96 Essence, Version 1.0

9.7 Textual Syntax

This section provides a textual syntax for the SEMAT Kernel Language and describes its mapping to the abstract syntax
presented above. The rules of the textual syntax are given in BNF-style.

The textual syntax does not specify any rules for file handling. Specifically it assumes that everything to be expressed
using this syntax is written in one single file. However, parser implementations may include facilities for merging files
prior to parsing in order to handle contents which are split over multiple files.

References between elements specified in the textual syntax can be made via identifiers. Each element that can be
referred to must define a unique identifier. Every element that wants to refer to another element can use this identifier as
a reference. Identifiers are unique within the containment hierarchy. Using an identifier outside the containment hierarchy
requires to prefix it with the identifiers of its parent element(s).

9.7.1 Rules

The following notation is used in this subsection:
* 0
e (...)* means 0 or more occurrences
e (...)?means 0 or 1 occurrence

e (...)*t means | or more occurrences

| denotes alternatives

ID is a special token representing a string which can be used as an identifier for the defined element

...Ref denotes a token representing an identifier of some element (i.e. not the defined element)

9.71.1 Root Elements
The root element representing the file containing the specification is defined as:

Model:
(AreaOfConcern) * (Kernel)* (Practice)*

An empty file is a valid root. If not empty, the file may contain an arbitrary number of AreaOfConcern declarations, an
arbitrary number of Kernel declarations and an arbitrary number of Practice declarations.

An AreaOfConcern declaration is defined as:

AreaOfConcern:
'areaOfConcern' ID (STRING)?

This maps directly to the language element with the same name as defined on Layer 3. The ID creates an unique
identifier for this AreaOfConcern, which maps to the attribute “name”. The STRING is considered as content for attribute
“description”. If no STRING is given, the empty string must be used for attribute “description”.

A Kernel declaration is defined as:

Kernel:
'kernel' ID
('based on kernels' KernelRef (',' KernelRef)*)?

|{|
(STRING) ?
(Alpha) *
(KernelAssociation) *
(Competency) *

) (ActivitySpace) *

Essence, Version 1.0 97

This maps directly to the language element with the same name as defined on Layer 3. The ID creates a unique identifier
for this Kernel, which maps to the attribute “name”. The STRING is considered as content for attribute “description”. If
no STRING is given, the empty string must be used for attribute “description”. KernelRef is a unique identifier of
another Kernel, thus mapping to attribute “baseKernel”. The remaining elements are declarations for elements that can be
owned by a Kernel.

A Practice declaration is defined as:

Practice:
'practice' ID
('based on kernels' KernelRef (',' KernelRef)*)?
('based on pr?ctices' PracticeRef (',' PracticeRef) *)?
1 1

(STRING) ?
(Alpha) *
(KernelAssociation) *
(WorkProduct) *
(AlphaManifest) *
(ActivitySpace) *
(Activity) *
(ActivityManifest) *
(Competency) *
(Skill) *
(Pattern) *

|}|

This maps directly to the language element with the same name as defined on Layer 3. The ID creates a unique identifier
for this Practice, which maps to the attribute “name”. The STRING is considered as content for attribute “description”. If
no STRING is given, the empty string must be used for attribute “description”. KernelRef is a unique identifier of a Ker-
nel, thus mapping to attribute “baseKernel”. PracticeRef is a unique identifier of a Practice, thus mapping to attribute
“basePractice”. The remaining elements are declarations for elements that can be owned by a Practice.

9.7.1.2 Kernel Elements

An Alpha declaration and its contents are defined as:

Alpha:
'alpha' ID
('concerns' AreaOfConcernRef) ?
'{* (STRING)? StateGraph '}’
StateGraph:
'has {' (StateGraphElement)+ '}’
StateGraphElement:
State | Transition
State:
'state' ID ('{' STRING ('checks {' (CheckListItem)+ '}')? '}')?
CheckListItem:

'item' ID '{' STRING '}’

Transition:
'transition' StateRef '->' StateRef

In all cases, the ID creates a unique identifier for the element, which maps to the attribute “name”. The STRING is con-
sidered as content for attribute “description”. If no STRING is given, the empty string must be used for attribute “de-
scription”. References via identifiers directly map to the respective associations of the meta-classes as defined in the

98 Essence, Version 1.0

abstract syntax.
KernelAssociation declarations resolve to two alternatives as:

KernelAssociation:
AlphaAssociation | AlphaContainment

AlphaAssociation:
Cardinality AlphaRef '--' STRING '-->' Cardinality AlphaRef
('in concern' AreaOfConcernRef)?

AlphaContainment:
AlphaRef 'contains' Cardinality AlphaRef

The STRING is considered as content for attribute “name” of this AlphaAssociation. The Cardinality maps to the attrib-
ute “multiplicity” in both cases. References via identifiers directly map to the respective associations of the meta-classes
as defined in the abstract syntax.

An ActivitySpace declaration and its contents are defined as:

ActivitySpace:
'activitySpace' ID

('concerns' AreaOfConcernRef)?

'{* (STRING)?
'targets' StateRef (',' StateRef)*
(InputAlpha) ?
(OutputAlpha) ?
(CompetencyRequirement) ?

|}|

InputAlpha:
'inputAlphas {' AlphaRef (',' AlphaRef)* '}’

OutputAlpha:
'outputAlphas {' AlphaRef (',' AlphaRef)* '}’

CompetencyRequirement:
'requires competency' CompetencyRef 'at level' CompetencyLevelRef (','
CompetencyRef 'at level' CompetencyLevelRef) *

The ID creates a unique identifier for this ActivitySpace, which maps to the attribute “name”. The STRING is considered
as content for attribute “description”. If no STRING is given, the empty string must be used for attribute “description”.
References via identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

A Competency declaration is defined as:

Competency:
'competency' ID
('concerns' AreaOfConcernRef) ?
'{* (STRING)? ('has {' (CompetencyLevel)* '}')? '}

CompetencyLevel:
'level' INT ID (STRING)? (SkillRequirement)?

In both cases, the ID creates a unique identifier for the element, which maps to the attribute “name”. The STRING is
considered as content for attribute “description”. If no STRING is given, the empty string must be used for attribute
“description”. The INT maps to the attriute “level” of the CompetencyLevel element in the abstract syntax. See below for
the SkillRequirement declaration, since this is usually added by a practice via composition. References via identifiers
directly map to the respective associations of the meta-classes as defined in the abstract syntax.

Essence, Version 1.0 929

9.7.1.3 Practice Elements

A WorkProduct declaration and its usage in an AlphaManifest declaration are defined as:

WorkProduct:
'workProduct' ID '{' (STRING)? StateGraph '}’

AlphaManifest:
'describe' AlphaRef 'by' Cardinality WorkProductRef (',' Cardinality
WorkProductRef) *

The ID creates a unique identifier for this WorkProduct, which maps to the attribute “name”. The STRING is considered
as content for attribute “description”. If no STRING is given, the empty string must be used for attribute “description”.
The Cardinality maps to the attribute “multiplicity” in the AlphaManifest. References via identifiers directly map to the
respective associations of the meta-classes as defined in the abstract syntax.

An Activity declaration and its contents are defined as:

Activity:
lactivity' ID

('follows' (ActivityRef)*)?

'{' (STRING)?
'targets' StateRef (',' StateRef)*
(InputAlpha) ?
(OutputAlpha) ?
(Input)?
(Output) ?
(CompetencyRequirement) ?
(SkillRequirement) ?

|}|
Input:
'input {' WorkProductRef (',' WorkProductRef)* '}

Output:
‘output {' WorkProductRef (',' WorkProductRef)* '}

SkillRequirement:
'requires skill' SkillRef 'at level' SkillLevelRef (',' SkillRef 'at level'
SkillLevelRef) *

The ID creates a unique identifier for this Activity, which maps to the attribute “name”. The STRING is considered as
content for attribute “description”. If no STRING is given, the empty string must be used for attribute “description”.
References via identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

An ActivityManifest declaration is defined as:

ActivityManifest:
'do' ActivitySpaceRef 'by' ActivityRef (',' ActivityRef)*

References via identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.
A Skill declaration is defined as:

Skill:
'gkill' ID
('concerns' AreaOfConcernRef)?
'{' (STRING)? ('has {' (SkillLevel)* '}')? '}

SkillLevel:
'level' INT ID (STRING)?

100 Essence, Version 1.0

In both cases, the ID creates a unique identifier for the element, which maps to the attribute “name”. The STRING is
considered as content for attribute “description”. If no STRING is given, the empty string must be used for attribute
“description”. The INT maps to the attribute “level” of the SkillLevel element in the abstract syntax. References via
identifiers directly map to the respective associations of the meta-classes as defined in the abstract syntax.

Pattern:
'pattern' STRING '{' (
('with alphas' AlphaRef (',' AlphaRef)*)?
('with workProducts' WorkProductRef (',' WorkProductRef) *)?
('with states' StateRef (',' StateRef)*)?
('with activities' ActivityRef (',' ActivityRef)*)?
('with activitySpaces' ActivitySpaceRef (',' ActivitySpaceRef)*)?

) '}

The STRING is considered as content for attribute “kind”. References via identifiers directly map to the respective
associations of the meta-classes as defined in the abstract syntax.

9.7.1.4 Auxiliary Elements

A Cardinality can be specified according to the following definition:

Cardinality:
CardinalityValue ('..' CardinalityValue)?

CardinalityValue:
INT | 'N'

An identifier used for reference is either a single token or prefixed as following:

ID ('.'ID)*

9.7.2 Examples

A complete Alpha declaration for Kernel Alpha “Requirement”:

alpha Requirements {
"What the software system must do to address the opportunity and satisfy
the stakeholders."

has {
state Conceived {"The need for a new system has been agreed."
checks

item clil {"The initial set of stakeholders agrees that a
system is to be produced."}

item cli2 {"The stakeholders that will use and fund the
new system are identified."}

item cli3 {"The stakeholders agree on the purpose of the
new system."}

item cli4 {"The expected value of the new system has been
agreed."}

}

state Bounded {"The theme and extent of the new system is clear."
checks {

item clil {"Stakeholders involved in developing the new
system are identified."}

item cli2 {"It is clear what success is for the new
system."}

item cli3 {"The stakeholders have a shared understanding
of the extent of the proposed solution."}

item cli4 {"The way the requirements will be described is
agreed upon."}

item cli5 {"The mechanisms for managing the requirements

Essence, Version 1.0 101

are in place."}

item cli7 {"Constraints are identified and considered."}

item cli6 {"The prioritisation scheme is clear."}
item cli8 {"Assumptions are clearly stated."}

}

state Coherent {"The requirements provide a coherent description of
the essential characteristics of the new system."
checks

item clil {"The requirements are captured and shared with
the team and the stakeholders."}

item cli2 E"The origin of the requirements is clear."}

item cli3 {"The rationale behind the requirements is
clear."}

item cli4 {"Conflicting requirements are identified and
attended to."}

item cli5 {"The requirements communicate the essential
characteristics of the system to be delivered."}

item cli6 {"The most important usage scenarios for the
system can be explained."}

item cli7 {"The priority of the requirements is clear."}

item cli8 {"The impact of implementing the requirements
is understood."}

item cl1i9 {"The team understands what has to be delivered
and agrees that they can deliver it."}

state SufficientlyDescribed {"The requirements describe a system that
is acceptable to the stakeholders."
checks {
item clil {"The stakeholders accept the requirements as
describing an acceptable solution."}
item cli2 {"The rate of change to the agreed requirements
is relatively low and under control."}
item cli3 {"The value provided by implementing the
requirements is clear."}
item cli4 {"The parts of the opportunity satisfied by the
requirements are clear."}

state Satisfactory {"The requirements that have been addressed
partially satisfy the need in a way that is acceptable to the stakeholders."
checks {

item clil {"Enough of the requirements are addressed for
the resulting system to be acceptable to the stakeholders."}

item cli2 {"The stakeholders accept the requirements as
accurately reflecting what the system does and doesn’t do."}

item cli3 {"The set of requirement items implemented
provide clear value to the stakeholders."}

item cli4 {"The system implementing the requirements is
accepted by the stakeholders as worth making operational."}

state Fulfilled {"The requirements that have been addressed fully
satisfy the need for a new system."
checks {

item clil {"The stakeholders accept the requirements as
accurately capturing what they require to fully satisfy the need for a new
system."}

item cli2 {"There are no outstanding requirement items
preventing the system from being accepted as fully satisfying the requirements."}

item cli3 {"The system is accepted by the stakeholders as
fully satisfying the requirements."}

}

102 Essence, Version 1.0

transition Conceived -> Bounded

transition Bounded -> Coherent

transition Coherent -> SufficientlyDescribed
transition SufficientlyDescribed -> Satisfactory
transition Satisfactory -> Fulfilled

A minimal declaration of an Activity Space using the Alpha declared above:

activitySpace SpecifyTheSystem {
targets Requirements.SufficientlyDescribed

}

A minimal declaration of a Practice using the Alpha and Activity Space declared above:

practice UserStoryPractice {

workProduct UserStory {

has

}

state Requested

state Written

state Realized

transition Requested -> Written
transition Written -> Realized

workProduct UserAcceptanceTest {

has {

}

state Planned

state Written

state Executed

state Passed

transition Planned -> Written

transition Written -> Executed
transition Executed -> Passed

activity WriteUserStories {
targets UserStory.Written

}

activity WriteUserAcceptanceTests {
targets UserAcceptanceTest.Written

}

describe Requirements by 1..N UserStory,

do SpecifyTheSystem by WriteUserStories,WriteUserAcceptanceTests

Essence, Version 1.0

1l..N UserAcceptanceTest

103

Annex A:

Responses to RFP Requirements

(Informative)

This annex provides the responses to the RFP requirements. The following tables provide a cross-reference between the
requirements as stated in the Request for Proposal and the corresponding responses provided by this submission.

A1

Mandatory Requirements

Table 17 — Mandatory Requirements (Kernel)

Requirement

Resolution

6.5.1.1 Domain model

The Kernel shall be represented as a domain
model of a small number (expected to be closer to
10 than a 100) of essential concepts of software
engineering and their relationships. The Kernel
shall be expressed in the Language.

The Kernel contains 7 Alphas and 15 Activity spaces capturing
the essentials of software engineering from the perspective of
the things to work with and the things to be done. The Kernel is
defined and presented using the language.

The Kernel may be extended to identify the essential
competencies required to undertake a software engineering
endeavor. This is likely to add another 5 or 6 elements.

The Kernel may be extended to include a number of
essential sub-alphas such as practice, tool, work item,
requirements item, system element, stakeholder
representative, team member etc. These would have
minimal state graphs that would be either used as is or
extended to support specific practices. This would add
another 10 — 15 elements.

6.5.1.2 Key conceptual elements

The Kernel shall define the key conceptual
elements that all software engineering endeavors
have to monitor, sustain and progress, covering at
least the following kinds of concepts (the specific
grouping used here is not required):

a. System: Concepts related to the system being
produced, for example: software, platform, etc.

b. Functionality: Concepts related to the required
function of the system being produced, for
example: requirements, needs, opportunities,
stakeholders, etc.

c. People: Concepts related to the people required
to create a system with the required functionality,
for example: project, team, role, etc.

d. Way of Working: Concepts related to the way an
organized team carries out its work to create a
system with the required functionality, for
example: method, practice, goal, etc.

The Kernel’s three areas of concern (see Section 8.2, 8.3 and
8.4) and their corresponding Alphas provide this coverage:

a. Covered by the alpha Software System (see Section
8.3.2.2).

b. Covered by the alphas Requirements (see Section
8.3.2.1), Stakeholders (see Section 8.2.2.1) and Opportunity
(see Section 8.2.2.2).

c. Covered by the alpha Team (see Section 8.4.2.1).

d. Covered by the alphas Work (see Section 8.4.2.2) and
Way-of-Working (see Section 8.4.2.3).

104

Essence, Version 1.0

6.5.1.3 Generic activities

The Kernel shall define the generic activities that
a team will need to undertake to successfully
engineer and produce a software system, covering
at least the following kinds of activities (the
specific grouping used here is not required):

a. Interacting with stakeholders: Activities related
to necessary interactions with stakeholders, for
example: exploring possibilities, understanding
needs, ensuring satisfaction, handling change, etc.

b. Developing the system: Activities related to
actually constructing a system, for example:
specifying, shaping, implementing, testing,
deploying and operating the system.

c. Managing the project: Activities related to
managing a project, for example: steering the
project, supporting the project team, assessing
progress and concluding the project.

The Kernel’s three areas of concerns (see Section 8.2, 8.3 and
8.4) and their corresponding Activity Spaces provide this
coverage:

e a. Covered by the activity spaces in the Customer area of
concern (see Section 8.2.3).

e b. Covered by the activity spaces in the Solution area of
concern (see Section 8.3.3).

e c. Covered by the Endeavor area of concern (see Section
8.4.3).

6.5.1.4 Kernel elements

The definition of each element of the Kernel shall
include the following:

a. A concise description of the meaning of the
element and its use in software engineering,
intuitively understandable to a practitioner.

b. The relationships of the element to other
elements in the Kernel.

c. The various different states the element may
take over time, including initial/entry and
final/exit criteria as appropriate for the element.

d. How the element is applied in practice,
including how it may be instantiated, tailored or
extended to support the work of a specific project
team using specific practices.

e. How different ways of applying the element
may be compared to each other and guidance on
deciding among the alternatives.

f. Appropriate metrics that can be used to assess
progress, quality, etc.

The Kernel element definitions cover:
e a. See the element descriptions.

e b. See Figure 3, Figure 4, the Alpha Associations, and the
Activity Space Completion Criteria.

e c. Each Alpha has a state graph and, for each state, entry
criteria. Each Activity Space has completion criteria.

e d. This will be covered by the examples.
e ¢. This will be covered by the examples.

o f. The Alpha states allow the measurement of progress and a
subjective assessment of quality. More empirical measures
can be added alongside the sub-alphas as part of maturing
the kernel specification

6.5.1.5 Scope and coverage

The Kernel shall be sufficient to allow for the
definition of practices and methods supporting
projects of all sizes and a broad range of lifecycle
models and technologies used by significant
segments of the software industry.

The Kernel can be extended to specific segments of the software
industry by creating kernel extensions and specific practices.

The Kernel is light-weight enough to be applied to even the
smallest of projects and comprehensive enough to support even
the largest of software endeavors.

The Alphas states can be used to define all types of lifecycle
model from the most lightweight agile lifecycle through more
formal iterative lifecycles to the most formal and traditional

Essence, Version 1.0

105

waterfall lifecycles.

See the lifecycle examples provided in Section C.1.3.

6.5.1.6 Extension

The Kernel shall also allow for extension, both in
terms of addition of new elements and providing
additional detail on existing elements that provide
for practice-specific work products.

a. The Kernel shall allow for project and
organization specific extensions.

b. The Kernel shall be tailorable to specific
domains of application and to projects involving
more than software, e.g., to serve as a basis for
future extensions for systems engineering.

The language allows Kernels to refer to other Kernels that are
based on via composition. This way, elements of two or more
Kernels can be merged to be used together in a specific situation.
The composition algebra also allows merging two elements into
one, that is, extending one element with the contents of the other
element.

Table 18 — Mandatory Requirements (Language)

Requirement

Resolution

6.5.2.1.1 MOF metamodel

The Language shall have an abstract syntax model
defined in a formal modeling language. The
submission is expected to reflect this requirement
in a description or mapping to the OMG
architectural framework based on MOF.

The definition of the abstract syntax is based on MOF.

6.5.2.1.2 Static and operational semantics

The Language shall have formal static and
operational semantics defined in terms of the
abstract syntax.

See Section 9.3 for the static semantics and section 9.5 for the
dynamic semantics.

6.5.2.1.3 Graphical syntax

The Language shall have a graphical concrete
syntax that formally maps to the abstract syntax.
The submission is expected to reflect this
requirement in a description following the
Diagram Definition specification [DD] unless
arguments are given for choosing something else.

See Section 9.6 for the definition of the graphical syntax. It is
not based in the Diagram Definition specification, since this
specification was only available in a beta version at the time of
writing.

6.5.2.1.4 Textual syntax

The Language shall also have a textual concrete
syntax that formally maps to the abstract syntax.

See Section 9.7 for the definition of the textual syntax.

6.5.2.1.5 SPEM 2.0 metamodel reuse

Proposals shall reuse elements of the SPEM 2.0
metamodel where appropriate. Where an
apparently appropriate concept is not reused,
proposals shall document the reason for creating
substitute model elements.

This is discussed in Annex B: Section B.2.

106

Essence, Version 1.0

6.5.2.2.1 Ease of use

The Language shall be designed to be easy to use
for practitioners at different competency levels:

a. Those that have very little modeling experience
and quickly and intuitively need to understand
and learn how to use the Language.

b. Intermediate users who are more advanced and
willing to describe what kind of outcome they
expect of their work.

c. Advanced users that can work with all aspects
of the Language to model their complete software
endeavor.

The abstract syntax of the language provides a concept of layers,
where each layer provides a subset of language elements. The
graphical syntax of the language provides a concept of views,
where each view is concerned with specific aspects of a kernel
or method. This can be used on different competency levels:

e a. Users with little modeling experience use only language
layers 1 and 2 and views on Alphas and Work Products.

e b. Intermediate users use language layer 3 and the view on
Activities in addition.

e c. Advanced users use all 4 language layers and add more
sophisticated views not defined in this specification.

6.5.2.2.2 Separation of views for practitioners and
method engineers

The Language shall provide features to express
two different views of a method: the method
engineer’s view and the practitioner’s view. The
primary users of methods and practices are
practitioners (developers, testers, project leads,
etc.).

The proposal shall be accessible to both
practitioners and method engineers, but should
target the practitioners first and foremost.
Extensions should support method engineers to
effectively define, compose and extend practices,
without complicating its usage by the
practitioners.

The views defined in this language specification are simple
views suitable for practitioners. They focus on a small set of
elements in each view and are thus easily accessible. Moreover,
no knowledge about composition is needed to define simple
practices.

The language specification allows to define additional views on
language constructs which suit the needs of method engineers.
The composition algebra allows to compose language constructs
in many ways, including composition of practices and extension
by composition. However, composed practices are not handled
differently from simple practices, so accessibility for
practitioners is not limited.

6.5.2.2.3 Specification of kernel elements

The Language shall have features for specifying
Kernel elements, including:

a. Formal and informal descriptions of the content
and meaning of an element.

b. The relationship of the element of other
elements.

c. States the element may take over time and the
events that cause transitions among those states.

d. How the element is instantiated, including
provisions for practice-specific tailoring of the
element, and the basis for comparing different
instantiations.

e. Metrics defined to assess various attributes of
the use of the element.

The language defines (amongst others) elements “Alpha” (see
Section 9.3.1.1) and “Activity Space” (see Section 9.3.3.3) for
specifying Kernel elements. The language include:

e a. Attributes for covering natural language descriptions of
these elements as well as state graphs (on Alphas) and
completion criteria (on Activity Spaces) to formally express
the key semantics of these elements.

e b. Alphas and Activity Spaces that can be related to each
other via states on completion criteria. Alphas can be related
to other Alphas via Alpha Associations.

e c. Alphas that own state graphs. Transition among these
states is covered by the dynamic semantics.

e d. Instantiation of Alphas that is covered by the dynamic
semantics.

e ¢. The dynamic semantics which include proposals on
functions measuring progress or health of an endeavor
based on the number of Alphas that are instantiated or the
states they have reached.

6.5.2.2.4 Specification of practices

The language specification provides an element “Practice” (see
Section 9.3.2.4) which is used and which relates to the Kernel

Essence, Version 1.0

107

The Language shall have features for specifying
practices in terms of Kernel elements, including:

a. Description of the particular cross-cutting
concern addressed by the practice and the goal of
the application of the practice.

b. The Kernel elements relevant to the practice
and how they are instantiated for use in the
practice, including any practice-specific tailoring
of the elements.

c. Any work products required by and produced
by the practice.

d. The expected progress of work under the
practice, including progress states, the rules for
transition between them and their relation to the
states of relevant Kernel elements used in the
practice. (For example, describing a practice that
involves iterative development requires describing
the starting and ending states of every iteration.)

e. Verification that the goal of the practice has
been achieved in it application, particularly in
terms of measurements of metrics defined for its
elements.

elements in the following ways:

e a. The element “Practice” owns a description. By looking at
the Alphas used in this Practice it can be determined in
which area this practice can be used.

e b. The element “Practice” can use Alphas and Activity
Spaces from the Kernel. Through composition, it can
redefine parts of these Kernel elements if necessary.
Instantiation of these elements is not specific to practices.

e c¢. The element “Practice” uses AlphaManifests to relate
WorkProducts to Alphas.

e d. Progress in general is covered by the state graphs on
Alphas and WorkProducts. Iterations can be covered by
Sub-Alphas, allowing to track states for each iteration
individually.

e ¢. The dynamic semantics can be used to determine whether
all Kernel elements are in their final states.

6.5.2.2.5 Composition of practices

The Language shall have features for the
composition of practices, to describe existing and
new methods, including:

a. Identifying the overall set of concerns
addressed by composing the practices.

b. Merging two elements from different practices
that should be the same in the resulting practice,
even if they have different contents defined in the
practices being composed. (For example, a use
case practice may have a work product called Use
Case, with a name, a basic flow etc. A testing
practice may have a work product called Testable
Requirement with an identifier and a description.
In the method resulting from composing these two
practices, these two work products should be
merged into one, where the name of the Use Case
is the identifier of the Testable Requirement and
the basic flow of the Use Case is the description
of the Testable Requirement).

c. Separating two elements from different
practices that should be different in the resulting
practice, even though they may superficially seem
to be the same. (For example, in a testing practice
there may be a work product called Plan and in an
iterative development practice there may also be a
work product called Plan. In the method resulting
from composing these two practices these two
work products must be different — e.g., the Testing

The composition algebra allows for composition of practices.

e a. Composed practices are in general not different from
simple practices, so the concerns addressed by a composed
practice can retrieved from looking at the alphas used in the
composed practice.

e b. The composition algebra allows for renaming of elements
so that different elements can be renamed to be safely
identified. Contents are merged recursively. Conflicts on
descriptions have to be solved manually.

e c. Renaming can also be used for changing names prior to
merging, so that elements can be kept distinguishable even
if they look similar in the original practices.

e d. Methods know the practices they are composed of so they
can be modified by redoing the composition with partially
the same and partially new practices.

108

Essence, Version 1.0

Plan vs. the Development Plan.)

d. Modifying an existing method by replacing a
practice within that method by another practice
addressing a similar cross-cutting concern.

6.5.2.2.6 Enactment of methods

The semantic definition of the Language shall
support the enactment by practitioners of methods
defined in the Language, for the purposes of

a. Tailoring the methods to be used on a project.

b. Communicating and discussing practices and
methods among the project team.

c. Managing and coordinating work during a
project, including modifications to the methods
over the course of the project by further tailoring
the use of the practices in the method.

d. Monitoring the progress of the project.

e. Providing input for tool

practitioners on the project.

support for

a. Any composition of practices can be instantiated as a
method and used on a particular endeavor, as long as it
addresses the concerns of this endeavor.

b. Different methods can be queried for advice in a
particular situation (as long as the methods address the
concerns at hand), so team can discuss the different advices
and communicate differences between methods based on
them.

c. Dynamic semantics are partially defined as denotational
semantics using the overall state of the endeavor as input,
thus not being dependent on using the same method
definition each time.

d. Tracing the overall state of the endeavor is part of the
dynamic semantics.

e. Dynamic semantics can partially be formalized, so they
can also be implemented in tools.

Table 19 — Mandatory Requirements (Practices)

Requirement

Resolution

6.5.3.1 Examples of Practices

a. Submissions shall provide working examples to
demonstrate the use of the Kernel and Language
to describe practices. Preferably these examples
should be drawn from existing and well-known
practices.

b. Submissions shall provide working examples to
demonstrate the composing of practices into a
method.

c. Submissions shall provide working examples to
demonstrate how a method can be enacted.

d. Submission shall include a capability to
demonstrate the operational execution of methods
as a proof of concept.

It is expected that the example practices are well-
structured and suited to demonstrate how well the
proposed Kernel and Language can be used to
define good-quality practices. Each example of
practice shall:

a. be described on its own, independent from any
other practice

b. be either explicitly defined as a continuous

A set of examples is described in Annex C:

a. See Section C.1.
b. See Section C.2.
c. See Section C.3.

d. See Section C.3.

Essence, Version 1.0

109

activity or have a clear beginning and end states
c. bring defined value to its stakeholders

d. be assessable; in other words, its description
must include criteria for its assessment when used

e. include, whenever applicable, quantitative
elements in its assessment criteria;
correspondingly, the description must include
suitable assessing metrics.

A.2 Optional Requirements

None

110

Essence, Version 1.0

Annex B: Issues to be Discussed

(Informative)

This annex provides the discussions on issues to be discussed from the RFP.

B.1 Kernel

This annex contains a discussion of the alternative options considered for the kernel elements defined in the Kernel
Specification. The Annex is presented in two sections:

1. Alphas — Alternatives for the names of the Alphas used in the kernel specification.

2. Activity Spaces - Alternative sets of Activity Spaces and Activity Space names.
Note: The Alphas are presented first as they were defined first and heavily influenced the selection and naming of the
Activity Spaces

B.1.1 Alphas

B.1.1.1 Alternatives Considered but Rejected for Opportunity
Opportunity — the set of circumstances that makes it appropriate to develop or change a software system.
On a grand scale, the opportunity to which the software system is addressed could be:
e To go into space — needs software systems on board the spacecraft, for communication, and on the ground.

e To run a chemical plant - needs logistics systems for shipping in and out, process control, new production
processes.

e To provide a new mobile phone platform - needs applications in the phone and on the web.

e To re-organize a business or government department - must continue to serve demands from customers and the
public as software systems are updated, "migrated" or retired.

In a business context, opportunities could include:

e Increase customer satisfaction — for example by a focus on end-to-end performance of the business in customer
terms.

e Decrease staff costs — for example by allowing expert systems to respond to customer enquiries.

e Provide better local weather forecasts — for example by using automation based on new research in meteorology.
On a more personal level, opportunities (motives) could include:

e To make my fortune by producing a hit game.

e To publicize my business to rich people.

e To educate and entertain.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

o Business Context — considered too vague to be useful. Teams need to identify the opportunity that the business
context provides.

e Domain of Expertise — doesn’t capture the concrete opportunity / problem to be addressed.

e Effect — sounds too much like a side effect of the work rather than its intent.

Essence, Version 1.0 111

Goal — considered too general. This would be too easily confused with the use of goals in project management
and other practices.

Motive / Motivation / Incentive - good ways to think about the opportunity but rejected as too abstract and
conceptual for most readers.

Needs — considered too confusing when compared and contrasted with requirements.
Objectives - considered too general. This would be too easily confused with the Team’s short-term objectives.
Problem / Underlying Problem — considered too negative.

Purpose — too easily confused with the requirements. It doesn’t reflect the opportunity to be addressed, and is
more commonly used to construct sentences such as “the purpose of the software system is to address the
opportunity”.

Value — too confusing as many of the other alphas will have value associated with them. An essential property
of any opportunity but considered too confusing for use as an alternative to opportunity.

B.1.1.2 Alternatives Considered but Rejected for Stakeholders

Stakeholders — The people, groups, or organizations who affect or are affected by a software system.

There are many different types of stakeholders and stakeholder groups, including:

Users - people who use the system. One very important type of stakeholder is the user. These are a prime
example of a set of stakeholders that must be involved in the development of the software system.

Project Steering Committees / User Groups / User Communities made up of the project sponsors, users and
other people affected by the development and maintenance of the software system. Many projects have a
project steering committees made up of the project sponsor, the senior supplier, the senior user and other
stakeholders or their representatives. This is one of the practices available to help involve the stakeholders. The
same can be said for structures such as User Groups and User Communities.

Customers and Sponsors, people who finance the development and maintenance of the software system. They
are also known as the “gold owners”.

Back-end support stakeholders such as Maintainers and Developers developing, evolving and maintaining the
software system.

Support and Operations made up of technicians providing feedback on the usage of a software system and
supporting its use.

Scrum Chickens, part of the stakeholder community in Scrum. Scrum acknowledges the presence of different
types of stakeholders in its concept of pigs and chickens where the development team members are the pigs and
the rest of the stakeholders, such as users and sponsors, are the chickens. Scrum focuses all of the involvement
of the stakeholders through the single role of the Product Owner, which is one of the many practices available
for managing the stakeholders.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

112

Customer — this was explored as a candidate name in an attempt to show that software engineering is customer
focused, but was rejected because 1) not all software engineering endeavors have customers in the traditional
sense, 2) confusion arose between customers and users, purchasers, and sponsors, and 3) there are many
stakeholders that people don’t consider to be customers such as internal governance bodies.

External Stakeholders — rejected because there are many circumstances where members of the team are also
stakeholders.

Set of Stakeholders — although it has the benefit of stressing the fact that it represents all of the stakeholders it
was rejected as too cumbersome for natural language use.

Stakeholder Community - although it has the benefit of stressing the fact that it represents all of the

Essence, Version 1.0

stakeholders it was rejected as too cumbersome for natural language use.

o Users, Sponsors etc - rejected because they are each only one type of stakeholder.

B.1.1.3 Alternatives Considered but Rejected for Requirements
Requirements: What the software system must do to address the opportunity and satisfy the stakeholders.
There are many different examples, and ways, of capturing the requirements including:

e Ina development context: Declarative Requirement Documents, Use Cases, User Stories and Tests (text and or
code) can all be used to record the Requirements.

e In a continuing context: Training, Service Level Agreements, Problem Investigations, Process Controls may
depend on an understanding of the Requirements, and may over time contribute to learning more about them.

e In an explicit context: A specification of system attributes, with desired and measureable levels, can constitute
the Requirements.

e In an implicit context: The Requirements may simply be that the Software System, or some part of it, must
continue in use.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

Concerns — this was considered but was quickly discarded as being too vague and not immediately meaningful to the
software engineering community.

e Intent — this one was considered in depth as a way of circumventing some of the bad feeling towards the word
requirements in parts of the agile community. Intent is defined as “something that is intended; an aim or
purpose”.

Requirements is preferred to intent because it is more concrete and it represents a specification (whether it be
explicit or tacit) against which the Software System will be accepted (and typically must be demonstrated to
conform). Requirements stand for something that is required and is a necessity or obligation. In comparison with
intent, requirements connote the idea of obligation or a must whereas intent connotes the idea of objective or
desire. Intent was also considered to be a little too abstract to resonate with the majority of the software
engineering community.

e Requirement — Some people would have preferred the term to be used in its singular form. Unfortunately using
the singular of a definition with the word must in can lead people to think that every detailed requirement
statement must be met by the software system produced. This is not the intent. “Requirement” is ambiguous
because it could mean “the requirement” (for the whole system, i.e. a synonym for “the specification”) or it
could mean “a requirement” (i.e. one of many that together comprise the overall requirement / specification).

e Specification — Wikipedia (http://en.wikipedia.org/wiki/Specification %?28technical standard%29) defines “A
specification is an explicit set of requirements to be satisfied by a material, product, or service.” In some
methods there is a focus on the production of some form of external / functional specification to which the
system must conform. This is often the intent of the requirements documentation.

This term was rejected as it is too easily confused with the technical design specifications that may also be
produced and because it sounds very heavy-weight.

e Usage - Although it is generally considered to be good practice to capture the requirements in some form of
usage based description (be it scenarios, use cases or user stories) it was felt that usage was too restrictive a
term and may cause practitioners to not look at their requirements holistically enough to really capture the
desires of their stakeholders.

B.1.1.4 Alternatives Considered but Rejected for Software System

Software System: A system made up of software, hardware, and data that provides its primary value by the execution of
the software.

There are many types of software system that can be the result of software engineering including:

Essence, Version 1.0 113

Purpose-built (bespoke) facilities including research, simulation, data capture and analysis for a scientific
enterprise, such as drug discovery and testing.

Bespoke software for a consumer platform such as mobile phone applications, games.
Commercial-Off-The-Shelf (COTS) product for ‘shrink-wrapped’ sale to customers, such as office productivity.

COTS products integrated into a business work system. These could be for resource planning (such as SAP
Business Management software) or for technical models and visualization (such as Intergraph SmartPlant).

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

Software / Working Software — This was considered to be too limiting. Is it just running code or does it
include all the information involved including the supporting documentation? If a team of people is developing
a database application but does not write a single line of code is what they’ve produced software?

Software was also considered to be too abstract a concept for the primary output from software engineering as in
and of itself it does not require engineering. Software is zeroes and ones, in the form of computer programs and
the data that they manipulate. To be useful software requires there to be a suitable computing platform upon
which it can be run. The output of software engineering must also consider the computing platform as well as
the software.

System - Although often used within computing circles this was considered to be too general. The consensus
was that all engineering disciplines produce some kind of system, and therefore software engineering needs to
produce something more specialized than just a system.

It was also thought that using system as a software engineering universal would cause confusion and friction
with the systems engineering community.

Software Intensive System - Originally proposed as the name, and rejected as it was considered to be limiting;
software engineering is also important in some systems that are not primarily software systems. It was also
considered to be too cumbersome.

Product / Software Product — It seemed a little too abstract to call the product of software engineering product.
There was also the problem of interpretation. Typically the term product is interpreted in one of two ways:

o commodities offered for sale; "that store offers a variety of products"”

o an artifact that has been created by someone or some process; for example "they improve their product
every year"; "they export most of their agricultural production”

The first interpretation implies a much greater scope than just producing working software systems — it would
imply that software engineering should always include marketing and product management activities and that it
always produces a software intensive system that is to be sold.

It was also considered to be too generic - there are many disciplines that produce artifacts that can be sold or
treated as products. We need a universal that helps to differentiate software engineering from other forms of
production and related professions that strive to produce products (such as catering and fashion industries).

Service - Although it is hoped that the results of software engineering will be of service, and provide useful
services to their users, to consider the product of software engineering to be a service rather than a form of
goods is probably a step too far.

Solution - The term solution often implies something potentially far-greater than the software system being
produced. It was also considered to be too generic — there are many disciplines that produce solutions. We need
a kernel that helps to differentiate software engineering from other forms of engineering and related professions
that strive to produce solutions (such as medicine and politics).

B.1.1.5 Alternatives Considered but Rejected for Work

Work: Activity involving mental or physical effort done in order to achieve a result.

Examples of evidence of work in software engineering endeavors include:

114

Essence, Version 1.0

The Scrum Sprint Backlog.

Team Task Lists.

Work item Lists.

Project Work Breakdown Structures.
Work Packages.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

Project - A project is one of many ways of organizing the work to be done. Project was rejected because much
software engineering is done within product centers and application development teams where the development
work is seen as on-going and not managed as a series of projects.

There is also the issue of organizing support and maintenance work, which again is often not managed as a
series of projects.

Task - A task is typically seen as a unit of work, and a way of breaking down the work into individually
addressable work items to be managed within a project plan or via a task board. Task is too specific and find-
grained a term to be used to represent the work in its entirety.

Activity — This was considered too general for use in the kernel. It would also cause confusion by clashing with
the Kernel Language’s use of the term activity.

Endeavor — This was considered too abstract to appeal to most software engineers.

B.1.1.6 Alternatives Considered but Rejected for Way of Working

Way-of-Working: The tailored set of practices and tools used by a team to guide and support their work.

There are many different examples of teams adopting a specific way of working:

Methods such as Dynamic Systems Development Method (DSDM).
Processes such as the Rational Unified Process (RUP).

Frameworks such as Scrum and Kanban.

Bodies of knowledge such as SWEBOK, PMBOK and ITSQB.
Practices such as Test-Driven Development and Continuous Integration.

Maturity Models such as CMMI.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

Method — not an appealing word to developers and other practitioners. Most practitioners see a method as being
a formal, comprehensively described description of what they are supposed to do, rather than a description of
what they actually do. If you ask a team to describe their way-of-working they will tell you what they do, if you
ask them to describe their method they will either claim that they don’t have one or point you at a stack of
documentation that they generally ignore.

Process — not an appealing word to developers and other practitioners. Suffers from the same problems as
method.

Methodology — actually means the study of methods.

Approach — considered too vague a name for such an important kernel element.

B.1.1.7 Alternatives Considered but Rejected for Team

Team: The group of people actively engaged in the development, maintenance, delivery and support of a specific

Essence, Version 1.0 115

software system.

Software engineering is a team sport and typically involves at least one team. Types of team and team structure used in
software engineering include:

The Cross-Functional Development Team — A small team containing all the skills needed to develop a working
software system, as used in Scrum and other agile methods.

Feature Teams and Component Teams — Types of cross-functional team organized around the requirements and
the architecture.

The Segregated Team — A team that is made up of a number of specialist teams such as:
o The Management Team.
o The Requirements Team.
o The Development Team.
o The Testing Team.
o The Support Team.

The Maintenance Team — A team focused on doing maintenance and makings small changes to a software
system.

The Team of Teams — A team made up of a number of other teams.

The following alternatives were considered but rejected as their definitions were considered too vague or too narrow in
scope. What was required was a word that best brought together the meanings of all the alternatives.

116

Development Team / Software Development Team / Software Engineering Team - The term development
team was originally proposed, but it was decided to drop the word development because it was felt it conveyed
the wrong meaning, implying that team membership is limited only to software developers. Some people argued
that the qualifiers made the role of the team clearer but within the context of software engineering, and our
software engineering kernel, the role and purpose of the team is quite clear.

The same reasoning holds for Software Development Team and Software Engineering Team.

Production Team / Enactment Team / Delivery Team - The word “Production” could be used to help classify
the team as the one actively involved in undertaking and participating in the work. “Production” distinguishes
this team from other interested parties that whilst influencing, guiding and supporting the endeavor are not
working directly on development activities.

The term is in general use in the production of plays, television shows and films to describe the group of
variously skilled people working to produce the play, TV show or film in question. This also has a high degree
of resonance when applied to the team working on a software system.

This term is rejected as too heavy and cumbersome, and also too limiting. The fact the Team is the Production
Team can be seen from its relationship with the software system and the stakeholder community. Within the
context of software engineering, and our set of software engineering universals, the role and purpose of the team
is quite clear.

The same reasoning holds for Enactment Team and Delivery Team.

People, Software People, Software System People, Software Engineers - Whilst these terms do perhaps
classify the interests of the group it does not suggest any accountability for the work or endeavor.

The term ‘people’ was rejected as too general. The term ‘software engineers' was rejected as too limiting (see
also Development Team and Production Team).

Essence, Version 1.0

B.1.2
B.1.2.1

Activity Spaces

Alternative Names for the Activity Spaces

Alternative names were considered for each of the activity spaces included in the Kernel Specification. Table 20 shows
the various names considered for the Activity Spaces in the Customer Area of Concern.

Table 20 - Alternative Names for the Customer Activity Spaces

Name Alternative Comments

Explore Possibilities Understand the Need ‘Understand the Need’ sounded too much like it should
deal with the requirements rather than the stakeholders
and the opportunity.

Involve Stakeholders Engage Stakeholders ‘Involve’ was preferred to ‘Engage’ as it reinforces the

fact the stakeholders must be active in supporting the
team.

Ensure Stakeholder Satis-
faction

Accept the System

The purpose here is to make sure that the stakeholders are
happy with the software system produced, and not to
force them to accept something they don’t want. This is
why ‘Ensure Stakeholder Satisfaction’ was preferred.

Use the System

Exploit the System

‘Exploit’ sounded too much like sales and marketing to
resonate with software developers.

The merging of the two Activity Spaces ‘Engage Stakeholders’ and ‘Ensure Stakeholder Satisfaction’ into a single
Activity Space was also considered but was rejected as it would have covered too many state changes.

Table 21 shows the various names considered for the Activity Spaces in the solution Area of Concern.

Table 21 — Alternative Names for the Solution Activity Spaces

Name

Alternative

Comments

Understand Requirements

Specify the System

‘Specify the System’ sounded very heavyweight and un-
agile. ‘Understand Requirements’ was judged to more
accurately reflect the purpose of the Activity Space and to
be more widely acceptable.

Shape the System

Architect the System

Design the System

Both of these alternatives seemed to be suggesting specif-
ic approaches to achieving the underlying state changes.

Implement the System

Implement Software

There is more than just implementing the software in-
volved in implementing a software system.

Create the System

‘Create the System’ sounded too much like green-field
development where no earlier version of the software
system exists.

Test the System

Verify the System

‘Test’ was considered to be simpler and more intuitive
than the more formal sounding ‘Verify’

Deploy the System

Release the System

These alternatives were all considered to just be one as-

Essence, Version 1.0

117

Package the System

Deliver the System

Go Live

pect of deploying the system.

Operate the System

Support the System

‘Operate’ was judged to communicate the purpose of the
Activity Space better than ‘Support’.

Table 22 shows the various names considered for the Activity Spaces in the endeavor Area of Concern.

Table 22 — Alternative Names for the Endeavour Activity Spaces

Name

Alternative

Comments

Prepare to do the Work

Start the Work

The purpose of the Activity Space is to get ready to start
the work, hence this alternative was rejected.

Prepare the Endeavor

This alternative was judged less intuitive than ‘Prepare to
do the Work’.

Co-ordinate Activity

Co-ordinate the Work

More than just the work is being coordinated.

Steer the Work ‘Steer the Work” was judged to be less accessible than
‘Coordinate Activity’. Also more than just the work is
being coordinated.
Support the Team No alternatives were suggested.
Track Progress Track the Work More than just the work is being tracked.
Do the Work Seemed to contradict the purpose of the Activity Spaces

all of which contain work to be done.

Assess Progress

Sounds too judgmental.

Stop the Work

Conclude the Endeavor

This alternative was judged less intuitive than ‘Stop the
Work’.

Closedown the Work

‘Stop’ seemed simpler and less formal.

The merging of the two Activity Spaces ‘Co-ordinate Activity’ and ‘Support the Team’ into a single Activity Space was
also considered but was rejected as it would have covered too many state changes.

B.1.3 Alternative sets of activity spaces

An alternative set of Activity Spaces was also prepared, one that used four areas of concern:

e People — This area of concern contains everything to do with the people directly or indirectly in the
development of the software system.

e Purpose - This area of concern contains everything to do with understanding and specifying what the software

system will do.

e Solution - This area of concern covers everything to do with the development of the software system.

e Endeavor - This area of concern contains everything to do with the work to be done and the way that it is to be

118

Essence, Version 1.0

approached.

This is shown in Figure 64. In this model the Alphas were also re-organized to place the team and stakeholders into the
new people Area of Concern, and opportunity and requirements into the purpose Area of Concern.

/‘ o [P [i
1 \ | \ | \ | \
H I \ | Y I \ 1 A
o | \ I \ I \ 1 \
! I ! !
O 1 / | / | / | /
E 1 4 I 4 1 4 1 y
e Ly AR ooy
\ At e Rescir ces fenenilve Sheake fuleier s Supgpeaed 1ie Tewarn Befenve Besonur ey
(G o § Yy \ . \ S \ ™
L I \ I \ | A\ I A%
v I \ I \ 1 Vi) \
8 1 ! 1 / 1 £y /
1 ’ [£ I 4 1 ’
i / ! 4 /
o) e Eo oy oo e
o Explore Possibilitics Understand the Accapt the System Use the System
\\ Hegquircmenis /
¢ v v ¢ Y = 0
1
\ \ \ \ \
O) ! .| \ \
|5 I 2 |) ! y | y |l ;
= i &l & i £ 7
O i y 4 i !/ i ! I ! i /
w g - - -4 L -4 B T
\.\¥ Skagpe the Sysfem Create the System Testf the Sysfem Release the System Gaeeate the Sesfem
/’ = = = = = P o= == = A [—— [= = = = a \\
% | \ I 5 1 \ 1 h
= i h I h 0 b
< I Yo . o 3
O / / I !
= I I ! / I ; I /
L SR Ly R .oy
\\ Start the Work Steer the Work Assess the Wark Stop the Work //

Figure 64 — Alternative Set of Activity Spaces using four Areas of Concern

In this model the number of Activity Spaces was considered to be too many to succinctly represent the things that need to
be done as part of any software engineering endeavor. Some of the Activity Spaces were not considered to be discrete
enough in particular the separation between ‘Acquire Resources’ and ‘Start the Work’, and ‘Release Resources’ and ‘Stop
the Work’. The consensus was that the model included in the Kernel Specification was more intuitive, clearer, and
succinct that the one presented here.

B.2 SPEM2.0

<This will be provided as an Annex update for the March meeting.>

Essence, Version 1.0 119

Annex C: Practice Examples

(Informative)

This annex provides working examples to demonstrate the use of the Kernel and Language to describe practices.

CA Practices

This section contains illustrative examples of the following:
e Scrum
e User Story

e Lifecycle examples

Cc11 Scrum

This section illustrates the Essence approach by modeling the Scrum project management practice. The Scrum practice as
documented here is for illustrative purposes only and explores how the Scrum practice may be mapped to the Essence
Kernel and Language. It should not be interpreted as a definitive example of how Scrum should be represented. There
may be multiple ways for different communities to represent Scrum.

C.1.1.1 Practice

The following Scrum concepts were identified from the Scrum guide [Schwaber and Sutherland 2011]:
e Scrum team (roles)
o Product Owner
o Development Team (of developers)
o Scrum Master
e Scrum events
o The Sprint
o Sprint Planning Meeting
o Daily Scrum
o Sprint Review
o Sprint Retrospective
e Scrum artifacts
o Product Backlog
o Sprint Backlog

o Increment

120 Essence, Version 1.0

Graphical syntax

Scrum & Requirements

Team

Software

System

Figure 65 — Scrum practice

C.1.1.2 Alphas
C.1.1.2.1 Work

We extend the Work alpha for Scrum. The Work alpha is typically used for the duration of a development project that
may cover a number of sprints. Thus we define a new sub-alpha called Sprint.

e "The heart of Scrum is a Sprint, a time-box of one month or less during which a “Done”, useable, and
potentially releasable product Increment is created. Sprints have consistent durations throughout a development

effort. A new Sprint starts immediately after the conclusion of the previous Sprint." [Schwaber and Sutherland
2011]

Essence, Version 1.0 121

Graphical syntax

Figure 66 — Sprint sub-alpha of Work

The Sprint has its own state graph. Scrum comes with its own specific set of rules that should be defined as part of the
practice, whereas the Work state machine and its associated checkpoints are more general. Here we have adopted the
states of the Requirements alpha but introduced Scrum-specific checkpoints (see the Textual syntax example).

Graphical syntax

Textual syntax
alpha Work {

122

\,

e ~
Initiated
. J
' N
Prepared
. J
~ \l’ ~
Started
\ J
~ ~
Under Control
. J
s ~
Concluded
\ J
4 ¢ N
Closed

7

Figure 67 — The states of the Sprint sub-alpha

Essence, Version 1.0

contains 1..

}

alpha Sprint {

N Sprint

"The heart of Scrum is a Sprint, a time-box of one month or less during
which a “Done”, useable, and potentially releasable product Increment is created.
Sprints have consistent durations throughout a development effort. A new Sprint
starts immediately after the conclusion of the previous Sprint.

(...continues...)"

has {
state

state
met."

state

state

state

state

Essence, Version 1.0

Initiated {"The work has been requested."
checks {
item cl {"Product Owner presents ordered Product
Backlog items to the Development Team."}

}

Prepared {"All pre-conditions for starting the work have been

checks {
item ¢l {"Entire Scrum Team collaborates on understanding
the work of the Sprint"}
item c2 {"Development Team decides how it will build this
functionality into a "Done" product Increment
during the Sprint"}
item ¢3 {"Scrum Team crafts a Sprint Goal"}

Started {"The work is proceeding."
checks {
item ¢l {"A new Sprint starts immediately after the
conclusion of the previous Sprint"}

Under Control {"The work is going well, risks are under
control, and productivity levels are sufficient to achieve a
satisfactory result."
checks
item cl {"Daily Scrum optimizes the probability that the
Development Team will meet the Sprint Goal."}
item c2 {"Every day, the Development Team should be able
to explain to the Product Owner and Scrum Master
how it intends to work together as a self-
organizing team to accomplish the goal and create
the anticipated increment in the remainder of the
Sprint."}

}

Concluded {"The work to produce the results has been
concluded."
checks {
item cl {"During the Sprint Review, the Scrum Team and
stakeholders collaborate about what was done in the
Sprint."}

}

Closed {"All remaining housekeeping tasks have been completed
and the work has been officially closed."
checks {
item cl {"A Sprint Review Meeting is held at the end of
the Sprint."}
item c2 {"The Sprint Retrospective occurs after the
Sprint Review and prior to the next Sprint Planning
Meeting."}

123

}
C.1.1.2.2 Team

The Scrum practice relates to the Team alpha. The Team alpha refers to the individuals working in the team, i.e. members
that may be represented by a sub-alpha. Scrum defines a specific Scrum Team which consists of a Product Owner, the
Development Team, and a Scrum Master.

e "The Scrum Team consists of a Product Owner, the Development Team, and a Scrum Master. Scrum Teams are
self-organizing and cross-functional. Self-organizing teams choose how best to accomplish their work, rather
than being directed by others outside the team. Cross-functional teams hawve all competencies needed to
accomplish the work without depending on others not part of the team. The team model in Scrum is designed to
optimize flexibility, creativity, and productivity." [Schwaber and Sutherland 2011]

Graphical syntax

Team

1.*

Scrum Team

Figure 68 — Scrum Team

Scrum mandates that one sole person should take on the role of a Product Owner and another sole person should take on
the role of the Scrum Master. These types of constraints could be added as checkpoints on the Team alpha itself, but
another alternative would be to define a specific Scrum Team as a sub-alpha. The introduction of a specific sub-alpha
would allow us to easier extend and scale the practice to Scrum of Scrums, including managing different types of teams
not all following Scrum.

Graphical syntax

Established

Figure 69 — The states of the Scrum Team sub-alpha

Textual syntax

alpha Team {
contains 1 Scrum Team
}

alpha Scrum Team {

"The Scrum Team consists of a Product Owner, the Development Team, and a
Scrum Master. Scrum Teams are self-organizing and cross-functional. Self-
organizing teams choose how best to accomplish their work, rather than being
directed by others outside the team. Cross-functional teams have all competencies

124 Essence, Version 1.0

needed to accomplish the work without depending on others not part of the team.
The team model in Scrum is designed to optimize flexibility, creativity, and
productivity.

(...continues...)"

has {
state Established {"Scrum Team is established."
checks { ‘
item cl {"The Product Owner is assigned."}
item c2 {"Developers are assigned to the Development
Team."}
item ¢3 {"The Scrum Master is assigned."}
) }
}

}
C.1.1.3 Work Products

C.1.1.3.1 Product Backlog and Sprint Backlog
The Product Backlog and Sprint Backlog are associated with the Requirements alpha.

e "The Product Backlog is an ordered list of everything that might be needed in the product and is the single
source of requirements for any changes to be made to the product. The Product Owner is responsible for the
Product Backlog, including its content, availability, and ordering." [Schwaber and Sutherland 2011]

e "The Sprint Backlog is the set of Product Backlog items selected for the Sprint plus a plan for delivering the
product Increment and realizing the Sprint Goal. The Sprint Backlog is a forecast by the Development Team
about what functionality will be in the next Increment and the work needed to deliver that functionality."
[Schwaber and Sutherland 2011]

Graphical syntax

Requirements X ¢

1 a 1
Product Sprint
Backlog Backlog

Figure 70 — Product Backlog

Textual syntax

workProduct Product Backlog {

"The Product Backlog is an ordered list of everything that might be needed
in the product and is the single source of requirements for any changes to be
made to the product. The Product Owner is responsible for the Product Backlog,
including its content, availability, and ordering.

(...continues...)"

has {

state NotOrdered
state Ordered

Essence, Version 1.0 125

transition NotOrdered -> Ordered

}

workProduct Sprint Backlog {

"The Sprint Backlog is the set of Product Backlog items selected for the
Sprint plus a plan for delivering the product Increment and realizing the Sprint
Goal. The Sprint Backlog is a forecast by the Development Team about what
functionality will be in the next Increment and the work needed to deliver that
functionality.

(...continues...)"

has {
state Planned
state Assigned
state Domne
transition Planned -> Assigned
transition Assigned -> Done

}

C.1.1.3.2 Increment
The Increment is associated with the Software System alpha.

e "The Increment is the sum of all the Product Backlog items completed during a Sprint and all previous Sprints.
At the end of a Sprint, the new Increment must be “Done,” which means it must be in useable condition and
meet the Scrum Team’s Definition of “Done.” It must be in useable condition regardless of whether the Product
Owner decides to actually release it." [Schwaber and Sutherland 2011]

Graphical syntax

Software
System

Increment

Figure 71 — Increment

Textual syntax

workProduct Increment {

"The Increment is the sum of all the Product Backlog items completed during
a Sprint and all previous Sprints. At the end of a Sprint, the new Increment must
be “Done,” which means it must be in useable condition and meet the Scrum Team’s
Definition of “Done.” It must be in useable condition regardless of whether the
Product Owner decides to actually release it.

(...continues...)"

has {

126 Essence, Version 1.0

}

state BeingDeveloped

state Done

state Released

transition BeingDeveloped -> Done
transition Done -> Released

C.1.1.4 Activities

The identified Scrum events may be mapped to corresponding activities. The concept of sprint however describes an
iteration that we will map to a sub-alpha of Work. This gives us the following activities:

Sprint Planning Meeting
Daily Scrum
Sprint Review

Sprint Retrospective

Graphical Syntax

Sprint Planning
Meeting

|

< Daily Scrum

!

Sprint Review

|

Sprint
Retrospective

NNV NV NS

Figure 72 — Scrum activities

C.1.1.4.1 Sprint Planning Meeting
The Sprint Planning Meeting is associated with the Prepare to do the Work activity space.

"The work to be performed in the Sprint is planned at the Sprint Planning Meeting. This plan is created by the
collaborative work of the entire Scrum Team. The Sprint Planning Meeting is time-boxed to eight hours for a
one-month Sprint. For shorter Sprints, the event is proportionately shorter. For example, two-week Sprints have
four-hour Sprint Planning Meetings." [Schwaber and Sutherland 2011]

Graphical syntax

\
Sprint Planni
Prepare to do the Work /\.— print Planning >

Meeting
S —

Figure 73 — Sprint Planning Meeting

Essence, Version 1.0 127

C.1.1.4.2 Daily Scrum

The Daily Scrum is associated with the

e "The Daily Scrum is a 15-minute time-boxed event for the Development Team to synchronize activities and
create a plan for the next 24 hours. This is done by inspecting the work since the last Daily Scrum and
forecasting the work that could be done before the next one." [Schwaber and Sutherland 2011]

Graphical syntax

\
Coordinate the Work /\0— Daily Scrum >

/
Figure 74 — Daily Scrum

C.1.1.4.3 Sprint Review
The Sprint Review is associated with the Track Progress activity space.

e "A Sprint Review is held at the end of the Sprint to inspect the Increment and adapt the Product Backlog if
needed. During the Sprint Review, the Scrum Team and stakeholders collaborate about what was done in the
Sprint. Based on that and any changes to the Product Backlog during the Sprint, attendees collaborate on the
next things that could be done. This is an informal meeting, and the presentation of the Increment is intended to
elicit feedback and foster collaboration." [Schwaber and Sutherland 2011]

Graphical syntax

\
Track Progress ,\0— Sprint Review >

/
Figure 75 — Sprint Review

C.1.1.4.4 Sprint Retrospective
The Sprint Retrospective is associated with the Support the Team activity space.

e "The Sprint Retrospective is an opportunity for the Scrum Team to inspect itself and create a plan for
improvements to be enacted during the next Sprint. The Sprint Retrospective occurs after the Sprint Review and
prior to the next Sprint Planning Meeting. This is a three-hour time-boxed meeting for one-month Sprints.
Proportionately less time is allocated for shorter Sprints." [Schwaber and Sutherland 2011]

Graphical syntax

\
Support the Team /\‘— Sprint >

Retrospective
R —

Figure 76 — Sprint Retrospective

C.1.1.5 Roles
Roles can be described as patterns:

e Product Owner

128 Essence, Version 1.0

e Development Team (of developers)

e Scrum Master

C.1.1.5.1 Product Owner

Textual syntax

role Product Owner {

"The Product Owner is responsible for maximizing the walue of the product
and the work of the Development Team. How this is done may wary widely across
organizations, Scrum Teams, and individuals.

(...continues...)"

}
C.1.1.5.2 Development Team

Textual syntax

role Development Team {

"The Development Team consists of professionals who do the work of
delivering a potentially releasable Increment of “Done” product at the end of
each Sprint. Only members of the Development Team create the Increment.

(...continues...)"

}
C.1.1.5.3 Scrum Master

Textual syntax

role Scrum Master {

"The Scrum Master is responsible for ensuring Scrum is understood and
enacted. Scrum Masters do this by ensuring that the Scrum Team adheres to Scrum
theory, practices, and rules. The Scrum Master is a servant-leader for the Scrum
Team.

The Scrum Master helps those outside the Scrum Team understand which of
their interactions with the Scrum Team are helpful and which aren’t. The Scrum
Master helps everyone change these interactions to maximize the value created by
the Scrum Team.

(...continues...)"

}
C.1.2 User Story

C.1.2.1 Practice

Graphical syntax

UserStory o Requirements
Practice

Figure 77 — User Story practice

Essence, Version 1.0 129

C.1.2.2 Work Products
C.1.2.2.1 User Story

Graphical syntax

Requirements

User
Story

Figure 78 — User Story
C.1.2.3 Activities
C.1.2.3.1 Write User Story

Graphical syntax

\
|
Under.stand s \0— Write User Story
| Requirements /
|

/
Figure 79 — Write User Story

C.1.3 Lifecycle Examples

The Essence Kernel enables practices to define lifecycles by sequencing a number of patterns, one for each phase and/or
milestone in the lifecycle.

This section provides illustrations of a number of typical software engineering lifecycles:
e A Unified Process lifecycle
o A waterfall lifecycle
e A set of complementary application development lifecycles
e A funding and decision making lifecycle

When reading these sections one should bear in mind that a lifecycle practice can do more than just arrange the alpha
states, it can also add items to the checklists, activities to formally review the milestones and any other planning or
review guidance it sees fit.

All the lifecycles are illustrated using the template shown in Figure 80.

130 Essence, Version 1.0

2]

Stak=holders Opportunity Rejuirements Swstem

Approach "
Sl

=
In Agreemzat

Sufficienthy
Descrbed

Satistactanly
Addreszsed
Zated or

D:plym et - - . (S oo Pafarming

Culfilled

Figure 80 - Lifecycle template

Each Kernel Alpha and its states are shown in a vertical column with their creation at the top and their destruction at the
bottom. Milestones are shown as a vertical bar across the grid starting with an inverted triangle to represent the milestone
and continuing with a white line over which are shown the states to be achieved to successfully pass the milestone.
Where achieving a state is either recommended or optional the state is shown with a dashed outline and italicized text.

C.1.3.1 The Unified Process Lifecycle

An illustration of the Unified Process Lifecycle is shown in Figure 81. In the Unified Process Lifecycle there are four
phases: Inception, Elaboration, Construction and Transition. Each of these ends in a distinct milestone: Lifecycle
Objectives Milestone, Lifecycle Architecture Milestone, Initial Operational Capability, Project End. In Figure 81, the
milestones are represented by the blue inverted triangles but the names are suppressed to keep things simple.

Essence, Version 1.0 131

(&

Recuirements Cystem

Inzeption i Frinsip ez
Btabllshed

Sufficiethy e
Cescribed i
Satisfactarily

Addressed

_ Cperational Crnehidad

Weriing Well

Fulfilled

Figure 81 — The Unified Process lifecycle

C.1.3.2 The Waterfall Lifecycle

An illustration of a Waterfall Lifecycle is shown in Figure 82. In this case there are six phases: Initiation, Requirements,
Analysis and Design, Implementation, Testing, and Deployment. Each of these ends in a distinct milestone, which in this

case are not named.

132 Essence, Version 1.0

ﬁequirements System Ao
: Princples
Estabiished
(Foumation
coiges
In Lz
- T - B

g

Under

Sufficient! i
I - e -
: {Collaborating)
{Peorting)

| Fomed [(Working Wel)

(Colaborating)
Concluded (Eecbaticn)

; S i s e = O
B l | | Fetind !
—

Figure 82 — A Waterfall lifecycle

Of most interest here are:
1. The fact that there is no work on the system itself until the Analysis and Design Phase at the earliest.

2. Different team formations are used for each phase and so the state of the team keeps getting set back to formed
with the hope that the new team will be collaborating and performing before the end of its phase.

3. The Requirements are sufficiently described by the end of the Requirements Phase and then not progressed
again until the Testing Phase.

C.1.3.3 A set of complementary application development lifecycles

The Kernel can be used in much more subtle ways than in the previous two examples. It is not un-common for
application development organizations to need multiple lifecycles to cope with the different types and styles of
development that they undertake. Figure 83 shows four complementary lifecycle models illustrating the typical demands
made upon an application development organization. This example is taken from a real software development
organization and uses their names for the four lifecycle models.

Essence, Version 1.0 133

Software Development — Build Application

Model | - Model Il - Model Il| —
Exploratory Standard Maintenance

fN
L d

Develop, enhanceandmaintain softwaresolutions. 9 Principles
1 Kernel
Scftware Operation / Run Application 20 Practices

Model IV — Support

<o

Operate and supportsolution in production

Figure 83 — Different types of development need different methods and lifecycles

Each lifecycle model is supported by a method, each of which is built on the same kernel, many of which share the same
practices, and each of which has its own lifecycle. The four lifecycles are shown in Figure 84. Here the four lifecycles are
deliberately shown in a single diagram to make the differences in the arrangements of the states easily visible.
Unfortunately this makes the wording very hard to read. If you are interested in the details of the figures they are
repeated at a larger size in Figure 85, Figure 86, Figure 87 and Figure 88.

Exphoatory

Figure 84 — Four complementary lifecycles to support application development

134 Essence, Version 1.0

The interesting things to note here are:

1. The different starting points of the different lifecycles. In this case much of the preparation work for standard
developments is done outside the Application Development project; hence the fact that the Opportunity is value
established, the Requirements are bounded and the System is architecture selected before the standard method is

used.

2. The way that maintenance doesn’t start until there is a usable system, and Support doesn’t start until there is an
operational System. These two methods are very focused with the Maintenance lifecycle only supporting small
changes and not allowing architectural change. If you want to change the architecture you must apply either the
Exploratory or the Standard lifecycles and their supporting methods.

3. The different end points of the different lifecycles. For example Transition is optional in the Exploratory method

and the Support method continues until the system is retired.

4. The Standard lifecycle is called standard as this is the default lifecycle for the teams to follow.

(&) @)

Reguirements

Exploratory

Inception

Elabaration

| i
vTransmon

Essence, Version 1.0

Stakeholders Opportunity

Recng e

Papreraindl

Zoltin Needed

walie
Fathlk barl

Wb

In Agreement k

Aikleszed

Coherent

Sufficienthy
Described

(@) (#) (&)

WWOrk

Team

~

Wiy of Working

Initiated

. 1 (Conietea)

Figure 85 — The Exploratory lifecycle

135

136

[T =

Standard

Solvtion deeckd |

Represe vkl

[o

Hyproac] b
fnlarrad

i i . " Derronstrabl
Elaboration [!
Sufficiently
e— - uThcientry
Satistactorily

[runes A opamiona -

£\
L4

iMaintenance

Sufficienthy
Dezcribed

ruction

— T -

- B

Figure 87 — The Maintenance lifecycle

Essence, Version 1.0

=) (&)

- Requiremerts Syétem

i ; T
- Concefved Selected
: nt‘ . "_Bounced - ~ Pinciples

i 2 1 Principles
- — — _ . Esfablished

[suMclently
i Descried

Suppoit

piEL

Irt=ke o nuse

Sated B Fulfilled Under -
Depomen R] P e e Sl

In Plaoe

(Pevhmiing | Wortsiag Llelt

Concluded
W o |

Figure 88 — The Support lifecycle

C.2 Composing Practices into Methods

<This will be provided as an Annex update for the March meeting.>

C.3 Enactment of Methods

<This will be provided as an Annex update for the March meeting.>

Essence, Version 1.0 137

