

ANALYZING THE TOOLS
OF SOFTWARE ENGINEERING

December 1, 2009

Draft 3.0

Abstract

From data collected by the author and colleagues from Software Productivity Research
during software assessment and benchmark studies there are major differences in the
patterns of software tool usage between “leading” and “lagging” enterprises. Leading
enterprises are defined as those in the top quartile of the companies evaluated by
Software Productivity Research in terms of software productivity, schedule adherence,
and quality results. Lagging enterprises are those in lower quartile.

The most significant differences noted between laggards and leaders are in the areas of
project management tools, quality assurance tools, and testing tools. Leaders tend to
exceed laggards by a ratio of about 15 to 1 in the volumes of tools associated with project
management and quality control. The function point metric is proving to be a useful
analytical tool for evaluating the capacities of software tool suites.

Various kinds of software engineering and management tools are used by all software
professionals between 2 and 7 hours per day, every day. Because so much of the work of
modern software engineering involves using tools, the usage patterns and effectiveness of
tools needs greater study than the software engineering literature has provided thus far.

Capers Jones, President
Capers Jones & Associates LLC

Capers Jones, Chief Scientist
Software Productivity Research, Inc.

Email: CJonesiii@cs.com
Web http://www.spr.com

Copyright 1997 - 2009 by Capers Jones.
All Rights Reserved.

 2

INTRODUCTION

There are hundreds or even thousands of commercial tools available for software
development, software project management, maintenance, testing, quality control and
other key activities associated with software projects. There are also hundreds of
proprietary, internal tools which companies build for their own use but not for sale to
others.

Every single working day software engineers, project managers, testers, and other
software professionals make use of tools between 2 hours and 7 hours per day, every day.
In fact without using various kinds of tools software engineering would not even exist as
an occupation. However the software literature has provided very little in the way of
quantitative analysis about either usage patterns or the overall impact of tools on software
productivity and quality. This report is an attempt to bring the issue of tool usage to the
attention of software engineering and project management researchers.

Many commercial software tool vendors make advertising claims about the power of
their tools in terms of increasing software development productivity, quality, or
shortening schedules. Many of these claims are not supported by empirical data, and
most appear to be exaggerated in greater or lesser degree. Indeed, the exaggerations by
tool vendors did much to discredit the value of Computer Aided Software Engineering
(CASE) which tended to promise more than it performed.

Considering the importance of software to business and industry, it is surprising that the
topic of software tool usage has been under-reported in the software literature. Indeed,
since about 1990 much of the software engineering literature has been devoted to the
subject of “software process improvement” and tools have been regarded as a minor
background issue. Tool alone do not distinguish between leaders and laggards, but tool
usage is a significant supplemental factor.

The author’s current company, Capers Jones & Associates LLC, also performs both
qualitative assessments and quantitative benchmark studies for clients. A part of the
analysis is collecting data on the numbers and kinds of tools utilized for software
development, project management, and other related activities. The master catalogs of
tools in our CHECKPOINT® and KnowledgePlan® data collection instruments include
more than 500 kinds of tools.

In addition, we also record data on software productivity, quality, schedules, and other
quantitative aspects of software performance as well as qualitative data on the methods
and processes utilized. As of 2009 the total number of software projects in our
knowledge base is rapidly pushing past 13,000 and the total number of client
organizations from which we have collected data is approaching 600 companies and
some government agencies.

In analyzing this data, we perform multiple regression studies on the factors that
influence the outcomes of software projects. Although the software development process

 3

is indeed a key issue, tools also exert a major impact. This report discusses some of the
differences in the patterns of tool usage noted between “lagging” organizations and
“leading” organizations. In terms of tool usage, the most significant differences between
laggards and leaders are in the domains of project management tools and quality control
tools.

PERFORMANCE OF LAGGING, AVERAGE, AND LEADING PROJECTS

Before discussing the impact of tools, it is useful to provide some background data on the
results which we associate with lagging, average, and leading software projects. In our
measurement studies we use the function point metric for data normalization, and this
report assumes version 4.2 of the function point counting rules published by the
International Function Point Users Group (IFPUG). Function points have substantially
replaced the older “lines of code” (LOC) metric for all quantitative benchmark studies,
since the LOC metric is not useful for large-scale studies involving multiple
programming languages.

Note that similar kinds of studies could be done using COSMIC function points, Finnish
function points, Netherlands function points, or some of the other functional size
variations. The size results would probably differ by about 15% from the current study.
Other metrics such as story points and use-case points do not seem particularly well
suited for tool analysis.

In our quantitative benchmark studies, as might be expected, the majority of projects are
“average” in terms of productivity, quality, and schedule results. What this report
concentrates on are the extreme ends of the data we collect: the outlying projects that are
either much better than average or much worse than average. There are more insights to
be gained by analysis of the far ends of the spectrum than by examining the projects that
cluster around the center.

Let us consider what it means for a software project to be considered “average” or
“leading” or “lagging” in quantitative terms. Although many attributes can be included,
in this short report only six key factors will be discussed:

1. The length of software development schedules
2. Productivity rates expressed in function points per staff month
3. Defect potentials expressed in function points
4. Defect removal efficiency levels
5. Delivered defect levels
6. Rank on the capability maturity model (CMMI) of the Software Engineering Institute

In general, the set of leading companies are better in all of these factors than either the
average or lagging groups. That is, their schedules are shorter, their quality levels are
better, and they place higher on the SEI CMMI.

 4

Average Software Projects

Because schedules vary with project size, the development schedules of average software
projects can be approximated by raising the function point total of the project to the 0.4
power. This calculation yields the approximate number of calendar months for
development between start of requirements and delivery to clients. Thus for a project of
1000 function points, raising that size to the 0.4 power yields a development schedule
from start of requirements until deployment that would be roughly 15.8 calendar months.

The defect potential or number of possible bugs that might be found for average projects
totals to about 5.0 bugs per function point. This is the sum of bugs or defects found in
five deliverable artifacts: requirements, design, source code, user documents, and “bad
fixes” or secondary defects introduced while fixing other defects. The cumulative defect
removal efficiency before delivery to clients is about 85%, so the number of bugs still
latent at the time of delivery is about 0.75 bugs per function point.

Software development productivity rates vary with the size and nature of the application,
but are typically in the range of 6 to 12 function points per staff month for projects in the
average zone.

Although the capability maturity model (CMMI) published by the Software Engineering
Institute (SEI) is based on qualitative rather than quantitative results, the data shown here
for average projects is representative of projects that are at Level 1 of the CMM, but not
far from Level 2.

Leading Software Projects

Software projects in the upper quartile of our data base have shorter schedules, higher
quality levels, and higher productivity rates simultaneously. This is not surprising,
because the costs, effort, and time to find software defects is usually the largest cost
driver and the most significant barrier to rapid development schedules.

To approximate the development schedule for projects in the upper quartile, raise the
function point total of the application to the 0.35 power to generate the number of
calendar months from requirements to deployment. For a sample project of 1000
function points in size, this calculation yields a result of about 11.2 calendar months from
start of requirements until deployment.

The defect potential or number of possible bugs that might be found for leading projects
is well below average, and runs to less than about 3.0 bugs per function point. The
cumulative defect removal efficiency before delivery to clients is about 95%, so the
number of bugs still latent at the time of delivery is about 0.15 bugs per function point.

The reduced levels of defect potentials stem from better methods of defect prevention,
while the elevated rates of defect removal efficiency are always due to the utilization of
formal design reviews and code inspections. Testing alone is insufficient to achieve

 5

defect removal rates higher than about 90% so all of the top-ranked quality organizations
utilize inspections also.

Here too the productivity rates vary with the size and nature of the application, but are
typically in the range of 12 to 25 function points per staff month for projects in the upper
quartile. (The maximum rate can exceed 50 function points per staff month.)

In terms of the capability maturity model (CMMI) published by the Software Engineering
Institute (SEI) the data for the upper quartile shown is representative of projects that are
at well into Level 3 of the CMMI, or higher.

Lagging Software Projects

Software projects in the lower quartile of our data base are troublesome and there is also
a known bias in our data. Many projects that would be in the lower quartile if the project
went all the way to completion are cancelled, and hence not studied in any depth.
Therefore the projects discussed here are those which were completed, but which were
well below average in results.

The effect of this situation is to make the lagging projects, as bad as they are, look
somewhat better than would be the case if all of the cancelled projects were included in
the same set. Unfortunately in our consulting work we are seldom asked to analyze
projects that have been terminated due to excessive cost and schedule overruns. We are
often aware of these projects, but our clients do not ask to have the projects included in
the assessment and benchmark studies that they commission us to perform.

To approximate the development schedule for projects in the lower quartile, raise the
function point total of the application to the 0.45 power to generate the number of
calendar months from requirements to deployment. For a sample project of 1000
function points in size, this calculation yields a result of about 22.4 calendar months.

The defect potential or number of possible bugs that are found for lagging projects is well
above average, and runs to more than about 7.0 bugs per function point. The cumulative
defect removal efficiency before delivery to clients is only about 75%, so the number of
bugs still latent at the time of delivery is an alarming 1.75 bugs per function point.
Needless to say, lagging projects have severe quality problems, unhappy users, and
horrendous maintenance expenses.

As will be discussed later, the lagging projects usually have no quality assurance tools or
software quality assurance teams, and may also be careless and perfunctory in testing as
well.

For laggards too the productivity rates vary with the size and nature of the application,
but are typically in the range of 1.0 to 5.0 function points per staff month, although some
projects in the lower quartile achieve only a fraction of a function point per staff month.

 6

(The minimum rate we’ve measured is 0.13 function points per staff month. The best
results from the laggard group seldom approach 10 function points per staff month.)

In terms of the capability maturity model (CMMI) published by the Software Engineering
Institute (SEI) the data for the lower quartile is representative of projects that are at well
back at the rear of Level 1 of the CMM.

NOTE: For additional information on U.S. national averages and ranges for software
schedules, productivity, and quality levels refer to the author’s book Applied Software
Measurement, 3rd edition, (Jones 2008).

A TAXONOMY OF SOFTWARE TOOL CLASSES

This report is concerned with fairly specialized tools which support software projects in
specific ways. There are of course scores of general-purpose tools used by millions of
knowledge workers such as word processors, spreadsheets, data bases, and the like.
These general-purpose tools are important, but are not covered in the following report in
depth because they are not really aimed at the unique needs of software projects.

Because tool usage is under-reported in the software literature there is no general
taxonomy for discussing the full range of tools which can be applied to software projects
or are deployed within software organizations. In this report, the author has developed
the following taxonomy for discussing software-related tools:

Project Management Tools

These are tools aimed at the software management community. These tools are often
concerned with predicting the costs, schedules, and quality levels prior to development of
software projects. The set of management tools also includes tools for measurement and
tracking, budgeting, and other managerial activities that are performed while software
projects are underway.

Note that there are a number of tools available for personnel functions such as appraisals.
However, these are generic tools and not aimed specifically at project management or
control of software projects themselves and hence are not dealt with in this report.

Software Engineering Tools

The set of software engineering tools are those used by programmers or software
engineering personnel. There are many tools in this family, and they cover a variety of
activities commencing with requirements analysis and proceeding through design,
coding, change control, static analysis, and personal testing such as unit test.

 7

Examples of the tools in the software engineering family include design tools, compilers,
assemblers, and the gamut of features now available under the term “programming
support environment.”

Numerically there are more vendors and more kinds of tools within the software
engineering family than any of the other families of tools discussed in this report. The
software engineering tools family has several hundred vendors and several thousand
projects in the United States alone, and similar numbers in Western Europe. Significant
numbers of tools and tool vendors also occur in the Pacific Rim and South America.

Software Maintenance Engineering Tools

The tools in this family are aimed at stretching out the lives of aging legacy software
applications. These tools are concerned with topics such as reverse engineering, code
restructuring, defect tracking, reengineering, and other activities that center on existing
applications. More modern “maintenance workbenches” provide support for full
renovation of legacy applications.

Although the family of maintenance tools is increasing, it has been an interesting
phenomenon that maintenance tools have never been as plentiful nor as well marketed as
software development tools.

The impact of two massive maintenance problems, the year 2000 and the Euro-currency
conversion, triggered a burst of new maintenance tools circa 1995 1999. For perhaps the
first time in software’s history the topic of maintenance began to achieve a level of
importance equal to new development.

Software Quality Assurance Tools

The tools in the software quality assurance (SQA) set are aimed at defect prediction,
prevention, defect tracking, and the other “traditional” activities of SQA teams within
major corporations.

It is an unfortunate aspect of the software industry that the family of quality-related tools
was small during the formative years of the software occupation, during the 1960’s and
1970’s. In recent years the numbers of quality-related tools have been increasing fairly
rapidly, although Software Quality Assurance (SQA) tools are still found primarily only
in large and sophisticated corporations. Incidentally, as a class, software quality groups
are often understaffed and underfunded.

Software Testing Tools

The family of testing tools has been expanding rapidly, and the vendors in this family
have been on a wave of mergers and acquisitions. The test tool market place is
expanding fairly rapidly, and new tools are being marketed at an increasing pace. New

 8

kinds of tools such as automated test tools and static analysis tools have joined the
traditional family of test tools.

The test tool community is logically related to the software quality assurance community,
but the two groups are not identical in their job functions nor in the tools which are often
utilized, although there are of course duplications of tools between the two job categories.

A wave of mergers and acquisitions has been sweeping through the test and quality tool
domain. As a result, test and quality assurance tools are now starting to be marketed by
larger corporations than was formerly the case, which may increase sales volumes. For
many years, test and quality assurance tools were developed and marketed by companies
that tended to be small and undercapitalized.

Software Documentation Tools

Every software project requires some kind of documentation support, in terms of users
guides, reference manuals, HELP text, and other printed matter. The more sophisticated
software projects have a substantial volume of graphics and illustrations too, and may
also use hypertext links to ease transitions from topic to topic.

For modern applications offered in the form of “software as a service” (SaaS) or web-
enabled office suites such as those by Google, all of the documentation is now on line
and available primarily from web sites.

The topic of documentation tools is undergoing profound changes under the impact of the
word wide web and the Internet. Also the topic of work-flow management and newer
technologies such as HTML, web authoring tools, and hypertext links are beginning to
expand the world of documentation from “words on paper” to a rich multi-media
experience where on-line information may finally achieve the long-delayed prominence
which has been talked about for almost 50 years.

TOOL USAGE ON AVERAGE, LAGGING, AND LEADING PROJECTS

This section of the report discusses the ranges and variations of tools noted on lagging,
average, and leading projects. Three primary kinds of information are reported in this
section:

1. Variances in the numbers of tools used in lagging and leading projects
2. Variances in the function point totals of the lagging and leading tool suites
3. Variances in the daily hours of usage by software engineers and managers

The count of the numbers of tools is simply based on assessment and benchmark results
and our interviews with project personnel. Although projects vary, of course, deriving
the counts of tools is reasonably easy to perform.

 9

The sizes of the tools expressed in function points are more difficult to arrive at, and have
a larger margin of error. For some kinds of tools such as cost estimating tools actual
sizes are known in both function point and lines of code form because the author’s
company builds such tools.

For many tools, however, the size data is only approximate and is derived either from
“backfiring” which is conversion from lines of code to function points; or from analogy
with tools of known sizes. The size ranges for tools in this report are interesting, but not
particularly accurate. The purpose of including the function point size data is to examine
the utilization of tool features in lagging and leading projects.

In general, the lagging projects depend to a surprising degree on manual methods and
have rather sparse tool usage in every category except software engineering, where there
are comparatively small differences between the laggards and the leaders.

Project Management Tools on Lagging and Leading Projects

The differences in project management tool usage are both significant and striking. The
lagging projects typically utilize only three general kinds of project management tools,
while the leading projects utilize 18. Indeed, the project management tool family is one
of the key differentiating factors between lagging and leading projects.

In general, the managers on the lagging projects typically use manual methods for
estimating project outcomes, although quite a few may use schedule planning tools such
as Microsoft Project. However, project managers on lagging projects tend to be less
experienced in the use of planning tools and to utilize fewer of the available features.
The sparseness of project management tools does much to explain why so many lagging
software projects tend to run late, to exceed their budgets, or to behave in more or less
unpredictable fashions. Table 1 shows project management tool ranges:

Table 1: Numbers and Size Ranges of Software Project Management Tools
 (Tool sizes are expressed in terms of IFPUG function points, version 4.2)

 Project Management Tools Lagging Average Leading
1 Project planning 1,000 1,250 3,000
2 Project cost estimating 3,000
3 Statistical analysis 3,000
4 Methodology management 750 3,000
5 Reusable feature analysis 2,000
6 Quality estimation 2,000
7 Assessment support 500 2,000
8 Project office support 500 2,000
9 Project measurement 1,750

10 Portfolio analysis 1,500
11 Risk analysis 1,500
12 Resource tracking 300 750 1,500
13 Governance tools 1,500
14 Value analysis 350 1,250

 10

15 Cost variance reporting 500 500 1,000
16 Personnel support 500 500 750
17 Milestone tracking 250 750
18 Budget support 250 750
19 Function point analysis 250 750
20 Backfiring: LOC to FP 300
21 Earned value analysis 250 300
22 Benchmark data collection 300

 Subtotal 1,800 4,600 30,000
 Tools 4 12 22

It is interesting that project managers on successful project tend to utilize tools about 4
hours per work day. On average projects the usage is about 2.5 hours per work day. On
lagging projects, barely an hour per day is devoted to tool usage.

By contrast, the very significant use of project management tools on the leading projects
results in one overwhelming advantage: “No surprises.” The number of on-time projects
in the leading set is far greater than in the lagging set, and all measurement attributes
(quality, schedules, productivity, etc.) are also significantly better.

Differences in the software project management domain are among the most striking in
terms of the huge differential of tool usage between the laggards and leaders. Variances
in the number of tools deployed is about 7 to 1 between the leaders and the laggards,
while variances in the tool capacities expressed in function points has a ratio of
approximately 17 to 1 between the leaders and the laggards. These differences are far
greater than almost any other category of tool.

Software Engineering Tools on Lagging and Leading Projects

The set of software engineering tools deployed has the smallest variance of any tool
category between the leaders and the laggard classes. In general, unless a critical mass of
software engineering tools are deployed software can’t be developed at all so the basic
needs of the software community have built up a fairly stable pattern of software
engineering tool usage.

Table 2 shows the numbers and volumes of software engineering tools deployed, but as
can easily be seen the variations are surprisingly small between the lagging, average, and
leading categories.

Table 2: Numbers and Size Ranges of Software Engineering Tools

 (Tool sizes are expressed in terms of IFPUG function points, version 4.2)

 Software Engineering Tools Lagging Average Leading

1 Compilers 3,500 3,500 3,500
2 Program generators 3,500 3,500
3 Design tools 1,000 1,500 3,000
4 Code editors 2,500 2,500 2,500
5 GUI design tools 1,500 1,500 2,500

 11

6 Assemblers 2,000 2,000 2,000
7 Configuration control 750 1000 2,000
8 Source code control 750 1000 1,500
9 Static analysis 1000 1,500

10 Automated testing 1000 1,500
11 Data modeling 750 1000 1,500
12 Debugging tools 500 750 1,250
13 Data base design 750 750 1,250
14 Capture/playback 500 500 750
15 Library browsers 500 500 750
16 Reusable code analysis 750

 Subtotal 15,000 22,000 29,750
 Tools 12 14 16

Software engineers are the most intense occupation in terms of tool usage. There is
comparatively little difference between lagging, average, and leading projects in terms of
daily hours of tool usage: somewhere between 5 and 9 hours per working day, every day.

There are some differences in software engineering tool usage, of course, but the
differences are very minor compared to the much more striking differences in the project
management and quality assurance categories.

The overall features and sizes of software engineering tools have been increasing as tool
vendors add more capabilities. About 10 years ago when the author first started applying
function point metrics to software tools, no software engineering tools were larger than
1000 function points in size, and the total volume of function points even among the
leading set was only about 10,000 function points. A case can be made that the power or
features of software engineering tools have tripled over the last 10 years.

As can be seen from table 2, although there are some minor differences in the tool
capacities between the leaders and the laggards, the differences in the number of software
engineering tools deployed is almost nonexistent.

A very common pattern noted among assessment and benchmark studies is for the
software development teams and tool suites to be fairly strong, but the project
management and quality tool suites to be fairly weak. This pattern is often responsible
for major software disasters, such as the long delay in opening up the Denver Airport
because the luggage-handling software was too buggy to be put into full production.

Software Maintenance Engineering Tools on Lagging and Leading Projects

When the focus changes from development to maintenance (defined here as the
combination of fixing bugs and making minor functional enhancements) the tool
differentials between the leaders and the laggards are much more significant than for
development software engineering.

 12

For many years, software maintenance has been severely understated in the software
literature, and severely underequipped in the tool markets. Starting about 10 years ago
the numbers of software personnel working on aging legacy applications began to
approach and in some cases exceed the numbers of personnel working on brand new
applications. This phenomenon brought about a useful but belated expansion in software
maintenance tool suites. Table 3 shows the variations in software maintenance
engineering tools:

Table 3: Numbers and Size Ranges of Maintenance Engineering Tools
 (Tool sizes are expressed in terms of IFPUG function points, version 4.2)

Maintenance Engineering
Tools

Lagging Average Leading

1 Maintenance work benches 1,500 3,500
2 Reverse engineering 1,000 3,000
3 Reengineering 1,250 3,000
4 ITIL support tools 1,000 3,000
5 Configuration control 500 1,000 2,000
6 Code restructuring 1,500
7 Customer support 750 1,250
8 Debugging tools 750 750 1,250
9 Defect tracking 500 750 1,000

10 Complexity analysis 1,000
11 Error-prone module analysis 500 1,000
12 Incident management 250 500 1,000
13 Reusable code analysis 500 750

 Subtotal 1,750 9,500 23,250
 Tools 4 11 13

Personnel on leading software maintenance projects tend to use tools more than 4 hours
per day. Laggards use tools less than 2 hours per day, while personnel on average
projects use tools about 3 hours per day.

As the overall personnel balance began to shift from new development to maintenance,
software tool vendors began to wake up to the fact that a potential market was not being
tapped to the fullest degree possible.

The differences between the leaders and the laggards in the maintenance domain are
fairly striking and include about a 4 to 1 differential in numbers of tools deployed, and a
13 to 1 differential in the function point volumes of tools between the leaders and the
laggards.

The emergence of two of the most massive business problems had a severe impact on
maintenance tools, and on maintenance personnel as well. The year 2000 software
problem and the ill-timed Euro-currency conversion work both triggered major increases
in software maintenance tools that can deal with these specialized issues.

 13

Other issues that affect maintenance work include the use of COTS packages, the use of
open-source applications, and the emergence of Software as a Service. Also the
Information Technology Infrastructure Library (ITIL) has also impacted both
maintenance and customer support tools.

Between about 1995 and 2010 industry maintenance “leaders” tend to have almost twice
the maintenance tool capacities as those available prior the elevation of maintenance to a
major occupation.

Software Quality Assurance Tools on Lagging and Leading Projects

When the software quality assurance tool suites are examined, one of the most striking
differences of all springs into focus. Essentially the projects and companies in the
“laggard” set have no software quality assurance function at all, and hence no SQA tool
suites either as can be seen in table 4.

Table 4: Numbers and Size Ranges of Software Quality Assurance Tools

 (Tool sizes are expressed in terms of IFPUG function points, version 4.2)

 Quality Assurance Tools Lagging Average Leading

1 Quality estimation tools 2,000
2 Quality measurement tools 750 1,500
3 Six-sigma analysis 1,250
4 Data quality analysis 1,250
5 QFD support 1,000
6 TQM support 1,000
7 Inspection support 1,000
8 Reliability estimation 1,000
9 Defect tracking 750 1,000

10 Complexity analysis 500 1,000
 Subtotal 0 1,500 12,000
 Tools 0 3 10

Quality assurance provides the greatest contrast between tool usage and lack of tool
usage. Quality assurance personnel on leading projects use tools almost 5 hours per day;
only about 2 hours per day on average projects. For lagging projects, tools might not
even be used. If they are, usage is seldom more than 1 hour per day.

By contrast, the leaders in terms of delivery, schedule control, and quality all have well-
formed independent software quality assurance groups that are supported by powerful
and growing tool suites.

Unfortunately, even leading companies are sometimes understaffed and underequipped
with software quality assurance tools. In part, this is due to the fact that so few
companies have software measurement and metrics programs in place that the significant
business value of achieving high levels of software quality is often unknown to the
management and executive community.

 14

Several tools in the quality category are identified only by their initials, and need to have
their purpose explained. The set of tools identified as “QFD support” are those which
support the special graphics and data analytic methods of the “quality function
deployment” methodology.

The set of tools identified as “TQM support” are those which support the reporting and
data collection criteria of the “total quality management” methodology.

The other tools associated with the leaders are the tools of the trade of the software
quality community: tools for tracking defects, tools to support design and code
inspections, quality estimation tools, reliability modeling tools, and complexity analysis
tools.

Complexity analysis tools are fairly common, but their usage is much more frequent
among the set of leading projects than among either average or lagging projects.
Complexity analysis is a good starting point prior to beginning complex maintenance
work such as error-prone module removal .

Another good precursor tool class prior to starting major maintenance tasks would be run
static analysis tools on the entire legacy application. However a caveat is that static
analysis tools only support about 25 languages out of the approximate 2,500
programming languages in existence. Static analysis is available for common languages
such as C, C++, C#, Java, COBOL, FORTRAN, and some others. Static analysis is not
available for the less common languages used for legacy applications such as JOVIAL,
CMS2, CHILL, or CORAL.

Unfortunately, since the laggards tend to have no quality assurance tools at all, the use of
ratios is not valid in this situation. In one sense, it can be said that the leading projects
have infinitely more software quality tools than the laggards, but this is simply because
the lagging set often have zero quality tools deployed.

Software Testing Tools on Lagging and Leading Projects

Although there are significant differences between the leading and lagging projects in
terms of testing tools, even the laggards test their software and hence have some testing
tools available.

Note that there is some overlap in the tools used for testing and the tools used for quality
assurance. For example, both test teams and software quality assurance teams may both
utilize complexity analysis tools.

Incidentally, testing by itself has never been fully sufficient to achieve defect removal
efficiency levels in the high 90% range. All of the “best in class” software quality
organizations use a synergistic combination of requirements inspections, static analysis,
design and code inspections, and multiple testing stages. This combined approach can

 15

lead to defect removal efficiency levels that may top 99% in best case situations, and
always top the current U.S. average of 85% or so.

Table 5: Numbers and Size Ranges of Software Testing Tools

 (Tool sizes are expressed in terms of IFPUG function points, version 4.2)

 Testing Tools Lagging Average Leading

1 Test case generation 1,500
2 Automated test tools 1,500
3 Complexity analysis 500 1,500
4 Manual test tools 500 1,500
5 Data quality analysis 1,250
6 Defect tracking 500 750 1,000
7 Test library control 250 750 1,000
8 Performance monitors 750 1,000
9 Capture/playback 500 750

10 Test path coverage 350
11 Test case execution 350

 Subtotal 750 3,750 11,700
 Tools 3 6 11

Modern testing is highly dependent on tool usage. On leading projects test tools are used
almost 7 hours per business day; about 5 hours on average projects; and perhaps 4 hours
per day even on lagging projects. Testing circa 2010 is intensely automated.

The differences in numbers of test tools deployed ranges by about 3.5 to 1 between the
leading and lagging projects. However, the tool capacities vary even more widely, and
the range of tool volumes is roughly 16 to 1 between the leaders and the laggards.

This is one of the more interesting differentials because all software projects are tested
and yet there are still major variations in numbers of test tools used and test tool
capacities. The leaders tend to employ full-time and well-equipped testing specialists
while the laggards tend to assign testing to development personnel, who are often poorly
trained and poorly equipped for this important activity.

For a more extensive discussion of the differences between leaders and laggards in terms
of both quality assurance and testing refer to the author’s book Software Quality -
Analysis and Guidelines for Success (Jones 1996) and the more recent Software
Engineering Best Practices (Jones 2009).

These book also discuss variations in the numbers and kinds of testing activities
performed, and also variations in the use of defect tracking tools, use of formal design
and code inspections, quality estimation, quality measurements, and many other
differentiating factors.

Unfortunately, none of the major vendors of test tools and only a few of the vendors of
quality assurance tools have any empirical data on software quality or provide
information on defect removal efficiency levels. The subject of how many bugs can

 16

actually be found by various kinds of review, inspection, and test is the most important
single topic in the test and quality domain, but the only published data on defect removal
tends to come from software measurement and benchmark companies rather than from
test tool and quality tool companies.

Software Documentation Tools on Lagging and Leading Projects

Almost all software projects require documentation, but very few are documented
extremely well. The set of documentation tools is undergoing profound transformation as
on-line publishing and the world wide web begin to supplant conventional paper
documents.

Note that some of these tools included here in the documentation section are also used for
requirements, specifications, plans, and other documents throughout the software
development cycle. For example, almost every knowledge worker today makes use of
“word processing” tools so these tools are not restricted only to the software
documentation domain.

As on-line publishing grows, this category is interesting in that the “average” and
“leading” categories are fairly close together in terms of document tool usage. However
the laggards are still quite far behind in terms of both numbers of tools and overall
capacities deployed.

Table 6: Numbers and Size Ranges of Software Documentation Tools

 (Tool sizes are expressed in terms of IFPUG function points, version 4.2)

 Documentation Support Tools Lagging Average Leading

1 Word processing 3,000 3,000 3,000
2 Web publishing 2000 2,500 3,000
3 Desktop publishing 2,500 2,500 2,500
4 Graphics support 500 500 2,500
5 Multimedia support 750 2,000
6 Grammar checking 500
7 Dictionary/thesaurus 500 500 500
8 Hypertext support 250 500
9 Web publishing 200 400 500

10 Scanning 300
11 Spell checking 200 200 200

 Subtotal 8,900 10,600 15,500
 Tools 7 9 11

There is not a great deal of difference in tool usage among writers and illustrators as of
2010. All three projects, lagging, average, and leading, tend to use tools between 4 and 6
hours per business day.

As web publishing becomes more common, it is likely that conventional paper
documents will gradually be supplanted by on-line documents. The advent of the

 17

“paperless office” has been predicted for years but stumbled due to the high costs of
storage.

Now that optical storage is exploding in capacities and declining in costs, optical on-line
storage is now substantially cheaper than paper storage, so the balance is beginning to
shift towards on-line documentation and the associated tool suites.

In the documentation domain the variance between the leaders and the laggards is 1.5 to 1
in the number of tools deployed, and almost 2 to 1 in the volumes of tools deployed. The
differences in the documentation category are interesting, but not so wide as the
differentials for project management and quality assurance tools.

Overall Tool Differences Between Laggards and Leaders

To summarize this analysis of software tool differentials between lagging and leading
organizations, table 7 shows the overall numbers of tools noted in our assessment and
benchmark studies.

Table 7: Ratios Between Tools Used by Lagging Project Compared to Leading Projects

 TOTAL TOOLS UTILIZED Lagging Average Leading Ratios
 Project Management Tools 4 12 22 1 to 5.5
 Software Engineering Tools 12 14 16 1 to 1.3
 Maintenance Engineering Tools 4 11 13 1 to 2.6
 Quality Assurance Tools 0 3 10 NA
 Testing Tools 3 6 11 1 to 3.6
 Documentation Support Tools 7 9 11 1 to 1.4
 TOTAL 30 55 83 1 to 2.5

As can be seen, there is roughly a 2.7 to 1 differential in the numbers of tools deployed
on leading projects as opposed to the numbers of tools on lagging projects. The major
differences are in the project management and quality assurance tools, where the leaders
are very well equipped indeed and the laggards are almost exclusively manual and lack
most of the effective tools for both project management and quality purposes.

When tool capacities are considered, the range of difference between the lagging and
leading sets of tools is even more striking and the range between leaders and laggards
jumps up to about a 4.3 to 1 ratio.

The use of function point totals to evaluate tool capacities is an experimental method with
a high margin of error, but the results are interesting. Although not discussed in this
report, the author’s long range studies over a 10 year period has found a substantial
increase in the numbers of function points in all tool categories.

It is not completely clear if the increase in functionality is because of useful new features,
or merely reflects the “bloat” which has become so common in the software world. For

 18

selected categories of tools such as compilers and programming environments, many of
the new features appear to be beneficial and quite useful.

The added features in many project management tools such as cost estimating tools,
methodology management tools, and project planning tools are also often giving valuable
new capabilities which were long needed.

For other kinds of tools however, such as word processing, at least some of the new
features are of more questionable utility and appear to have been added for marketing
rather than usability purposes.

Table 8 illustrates the overall differences in tool capacities using function point metrics as
the basis of the comparison:

Table 8: Ratio of Tool Features Used by Lagging Project Compared to Leading Projects
 (Tool sizes are expressed in terms of IFPUG function points, version 4.2)

 TOTAL TOOL FUNCTION POINTS Lagging Average Leading Ratios
 Project Management Tools 1,800 4,600 30,000 1 to 16.6
 Software Engineering Tools 15,000 22,000 29,750 1 to 1.9
 Maintenance Engineering Tools 1,750 9,500 23,250 1 to 13.2
 Quality Assurance Tools 0 1,500 12,000 NA
 Testing Tools 750 3,750 11,700 1 to 15.6
 Documentation Support Tools 8,900 10,600 15,500 1 to 1.7
 TOTAL 28,200 51,950 122,200 1 to 4.3

Unfortunately both tables 7 and 8 are somewhat awkward in terms of ratios, since the
laggards tend to have 0 tools deployed for the quality assurance domain. When tool
capacities are considered, the major differences can be found in project management,
maintenance engineering, testing, and quality assurance.

SUMMARY AND CONCLUSIONS

Although software tools have been rapidly increasing in terms of numbers and features,
the emphasis on software process improvement in the software engineering literature has
slowed down research on software tool usage.

Both software processes and software tools have significant roles to play in software
engineering, and a better balance is needed in research studies that can demonstrate the
value of both tools and process activities.

The use of function point metrics for exploring software tool capacities is somewhat
experimental, but the results to date have been interesting and this method may well
prove to be useful. Long-range analysis by the author over a 10 year period using
function point analysis has indicated that software tool capacities have increased
substantially, by a range of about 3 to 1. It is not yet obvious that the expansion in tool
volumes has added useful features to the software engineering world, or whether the

 19

expansion simply reflects the “bloat” that has been noted in many different kinds of
software applications.

 20

REFERENCES AND READINGS

Garmus, David and Herron, David; Function Point Analysis – Measurement Practices for

Successful Software Projects; Addison Wesley Longman, Boston, MA; 2001; ISBN
0-201-69944-3;363 pages.

Howard, Alan (Ed.); Software Productivity Tool Catalogs; (in seven volumes); Applied

Computer Research (ACR; Phoenix, AZ; 1997; 300 pages.

International Function Point Users Group (IFPUG); IT Measurement – Practical Advice

from the Experts; Addison Wesley Longman, Boston, MA; 2002; ISBN 0-201-
74158-X; 759 pages.

Jones, Capers; Function Point Metrics and Software Usage Patterns; Capers Jones &

Associates; Narragansett, RI; Dec. 1, 2009.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, 2009; ISBN 97800-07-
162161-8; 660 pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN
978-0-07-150244-3; 668 pages; 3rd edition (March 2008).

Jones, Capers; Estimating Software Costs; McGraw Hill, New York; 2007; ISBN 13-

978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley

Longman, Boston, MA; ISBN 0-201-48542-7; 2000; 657 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN 0-

13-741406-4; 711 pages.

Jones, Capers; Patterns of Software System Failure and Success; International Thomson

Computer Press, Boston, MA; December 1995; 250 pages; ISBN 1-850-32804-8;
292 pages.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International

Thomson Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Jones, Capers: “Sizing Up Software;” Scientific American Magazine, Volume 279, No. 6,

December 1998; pages 104-111.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition;

Addison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Pressman, Roger; Software Engineering – A Practitioner’s Approach; McGraw Hill, NY;

6th edition, 2005; ISBN 0-07-285318-2.

 21

