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Abstract 

The oldest metric for software quality economic study is that of “cost per defect.”   While 
there may be earlier uses, the metric was certainly used within IBM by the late 1960’s for 
software; and probably as early as 1950’s for hardware.    

As commonly calculated the cost-per-defect metric measures the hours associated with 
defect repairs and the numbers of defects repaired and then multiplies the results by 
burdened costs per hour. 

The cost-per-defect-metric has developed into an urban legend, with hundreds of 
assertions in the literature that early defect detection and removal is cheaper than late 
defect detection and removal by more than 10 to 1.  This is true mathematically, but there 
is a problem with the cost per defect calculations that will be discussed in the article.  As 
will be shown, cost per defect is always cheapest where the greatest numbers of defects 
are found.  As quality improves, cost per defect gets higher until zero defects are 
encountered, where the cost per defect metric goes to infinity. 

More importantly the cost-per-defect metric tends to ignore the major economic value of 
improved quality: shorter development schedules and reduced development costs outside 
of explicit defect repairs. 

Capers Jones, President, Capers Jones & Associates LLC 

Email: CJonesiii@cs.com. 

 

Copyright © 2009 by Capers Jones & Associates LLC.  All rights reserved. 

 



	
   2	
  

INTRODUCTION 

The cost-per-defect metric has been in continuous use since the 1970’s for examining the 
economic value of software quality.  Hundreds of journal articles and scores of books 
include stock phrases, such as “it costs 100 times as much to fix a defect after release as 
during early development.”   

Typical data for cost per defect varies from study to study but resembles the following 
pattern circa 2009: 

Defects found during requirements =      $250 

Defects found during design =      $500 

Defects found during coding and testing =  $1,250 

Defects found after release =    $5,000 

While such claims are often true mathematically, there are three hidden problems with 
cost per defect that are usually not discussed in the software literature: 

1. Cost per defect penalizes quality and is always cheapest where the greatest 
numbers of bugs are found. 

2. Because more bugs are found at the beginning of development than at the end, the 
increase in cost per defect is artificial.  Actual time and motion studies of defect 
repairs show little variance from end to end. 

3. Even if calculated correctly, cost per defect does not measure the true economic 
value of improved software quality.  Over and above the costs of finding and 
fixing bugs, high quality leads to shorter development schedules and overall 
reductions in development costs.  These savings are not included in cost per 
defect calculations, so the metric understates the true value of quality by several 
hundred percent. 

Let us consider these problem areas using examples that illustrate the main points.. 



	
   3	
  

Why Cost per Defect Penalizes Quality 

The well-known and widely cited “cost per defect measure” unfortunately violates the 
canons of standard economics.  Although this metric is often used to make quality 
economic claims, its main failing is that it penalizes quality and achieves the best results 
for the buggiest applications!    

Furthermore, when zero-defect applications are reached there are still substantial 
appraisal and testing activities that need to be accounted for.  Obviously the “cost per 
defect” metric is useless for zero-defect applications. 

As with KLOC metrics discussed in another paper, the main source of error is that of 
ignoring fixed costs.  Three examples will illustrate how “cost per defect” behaves as 
quality improves. 

In all three cases, A, B, and C, we can assume that test personnel work 40 hours per week 
and are compensated at a rate of $2,500 per week or $75.75 per hour using fully burdened 
costs.  Assume that all three software features that are being tested are 100 function 
points in size. 

Case A: Poor Quality 

Assume that a tester spent 15 hours writing test cases, 10 hours running them, and 15 
hours fixing 10 bugs.  The total hours spent was 40 and the total cost was $2,500.  Since 
10 bugs were found, the cost per defect was $250.  The cost per function point for the 
week of testing would be $25.00.  

Case B: Good Quality 

In this second case assume that a tester spent 15 hours writing test cases, 10 hours 
running them, and 5 hours fixing one bug, which was the only bug discovered.  

However since no other assignments were waiting and the tester worked a full week 40 
hours were charged to the project.  The total cost for the week was still $2,500 so the cost 
per defect has jumped to $2,500.   

If the 10 hours of slack time are backed out, leaving 30 hours for actual testing and bug 
repairs, the cost per defect would be $2,273.50 for the single bug.   

As quality improves, “cost per defect” rises sharply. The reason for this is that writing 
test cases and running them act like fixed costs.   It is a well-known law of manufacturing 
economics that: 

“If a manufacturing cycle includes a high proportion of fixed costs and there is a 
reduction in the number of units produced, the cost per unit will go up.” 
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As an application moves through a full test cycle that includes unit test, function test, 
regression test, performance test, system test, and acceptance test the time required to 
write test cases and the time required to run test cases stays almost constant; but the 
number of defects found steadily decreases..  

Table 1 shows the approximate costs for the three cost elements of preparation, 
execution, and repair for the test cycles just cited using the same rate of $:75.75 per hour 
for all activities: 

Table 1:  Cost per Defect for Six Forms of Testing   
(Assumes $75.75 per staff hour for costs)    
       
 Writing Running Repairing TOTAL Number of $ per 

 Test Cases 
Test 

Cases Defects COSTS Defects Defect 
       
Unit test $1,250.00 $750.00 $18,937.50 $20,937.50 50 $418.75 
       
Function test $1,250.00 $750.00 $7,575.00 $9,575.00 20 $478.75 
       
Regression test $1,250.00 $750.00 $3,787.50 $5,787.50 10 $578.75 
       
Performance 
test $1,250.00 $750.00 $1,893.75 $3,893.75 5 $778.75 
       
System test $1,250.00 $750.00 $1,136.25 $3,136.25 3 $1,045.42 
       
Acceptance test $1,250.00 $750.00 $378.75 $2,378.75 1 $2,378.75 

 

What is most interesting about table 1 is that cost per defect rises steadily as defect 
volumes come down, even though table 1 uses a constant value of 5 hours to repair 
defects for every single test stage!  In other words every defect identified throughout 
table 1 had a constant cost of $378.25 when only repairs are considered.   

In fact all three columns use constant values and the only true variable in the example is 
the number of defects found.  In real life, of course, preparation, execution, and repairs 
would all be variables.  But by making them constant, it is easier to illustrate the main 
point:  cost per defect rises as numbers of defects decline. 

Since the main reason that cost per defect goes up as defects decline is due to the fixed 
costs associated with preparation and execution, it might be thought that those costs could 
be backed out and leave only defect repairs.  Doing this would change the apparent 
results and minimize the errors, but it would introduce three new problems: 
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1. Removing quality cost elements that may total more than 50% of total quality 
costs would make it impossible to study quality economics with precision and 
accuracy. 

2. Removing preparation and execution costs would make it impossible to calculate 
cost of quality (COQ) because the calculations for COQ demand all quality cost 
elements. 

3. Removing preparation and execution costs would make it impossible to compare 
testing against formal inspections, because inspections do record preparation and 
execution as well as defect repairs. 

Backing out or removing preparation and execution costs would be like going on a low-
carb diet and not counting the carbs in pasta and bread, but only counting the carbs in 
meats and vegetables.  The numbers might look good, but the results in real life would 
not be good. 

Let us now consider cost per function point as an alternative metric for measuring the 
costs of defect removal.  With the slack removed the cost per function point would be 
$18.75.  As can easily be seen cost per defect goes up as quality improves, thus violating 
the assumptions of standard economic measures.  However, as can also be seen, testing 
cost per function point declines as quality improves.  This matches the assumptions of 
standard economics.  The 10 hours of slack time illustrate another issue:  when quality 
improves defects can decline faster than personnel can be reassigned. 

Case C: Zero Defects 

In this third case assume that a tester spent 15 hours writing test cases and 10 hours 
running them.  No bugs or defects were discovered.   

Because no defects were found, the “cost per defect” metric cannot be used at all.  But 25 
hours of actual effort were expended writing and running test cases.  If the tester had no 
other assignments, he or she would still have worked a 40 hour week and the costs would 
have been $2,500.  

If the 15 hours of slack time are backed out, leaving 25 hours for actual testing, the costs 
would have been $1,893.75. With slack time removed, the cost per function point would 
be $18.38.  As can be seen again, testing cost per function point declines as quality 
improves.  Here too, the decline in cost per function point matches the assumptions of 
standard economics. 

Time and motion studies of defect repairs do not support the aphorism that “it costs 100 
times as much to fix a bug after release as before.”  Bugs typically require between 15 
minutes and 6 hours to repair regardless of where they are found.   



	
   6	
  

 

(There are some bugs that are expensive and may takes several days to repair, or even 
longer.  These are called “abeyant defects” by IBM.  Abeyant defects are customer-
reported defects which the repair center cannot recreate, due to some special combination 
of hardware and software at the client site.  Abeyant defects comprise less than 5% of 
customer-reported defects.)  

Considering that cost per defect has been among the most widely used quality metrics for 
more than 50 years, the literature is surprisingly ambiguous about what activities go into 
“cost per defect.”  More than 75% of the articles and books that use cost per defect 
metrics do not state explicitly whether preparation and executions costs are included or 
excluded.  In fact a majority of articles do not explain anything at all, but merely show 
numbers without discussing what activities are included. 

Another major gap is that the literature is silent on variations in cost per defect by 
severity level.  A study done by the author at IBM showed these variations in defect 
repair intervals associated with severity levels. 

 Table 2 shows the results of the study.  Since these are customer-reported defects, 
“preparation and execution” would have been carried out by customers and the amounts 
were not reported to IBM. 

Table 2: Defect Repair Hours by Severity Levels for Field Defects  
       
 Severity 1 Severity 2 Severity 3 Severity 4 Invalid Average 
       
> 40 hours 1.00% 3.00% 0.00% 0.00% 0.00% 0.80% 
       
30 - 39 
hours 3.00% 12.00% 1.00% 0.00% 1.00% 3.40% 
       
20 - 29 
hours 12.00% 20.00% 8.00% 0.00% 4.00% 8.80% 
       
10 - 19 
hours 22.00% 32.00% 10.00% 0.00% 12.00% 15.20% 
       
1 - 9 hours 48.00% 22.00% 56.00% 40.00% 25.00% 38.20% 
       
> 1 hour 14.00% 11.00% 25.00% 60.00% 58.00% 33.60% 
       
TOTAL 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

As can be seen, the overall average would be close to perhaps 5 hours, although the range 
is quite wide. 
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In table 2, severity 1 defects mean that the software has stopped working.  Severity 2 
means that major features are disabled.  Severity 3 refers to minor defects.  Severity 4 
defects are cosmetic in nature and do not affect operations.  Invalid defects are hardware 
problems or customer errors inadvertently reported as software defects.  A surprisingly 
large amount of time and effort goes into dealing with invalid defects although this topic 
is seldom discussed in the quality literature. 

Using Function Point Metrics for Defect Removal Economics 

Because of the fixed or inelastic costs associated with defect removal operations, cost per 
defect always increases as numbers of defects decline.  Because more defects are found at 
the beginning of a testing cycle than after release, this explains why cost per defect 
always goes up later in the cycle.   

An alternate way of showing the economics of defect removal is to switch from “cost per 
defect” and use “defect removal cost per function point”.  Table 3 uses the same basic 
information as Table 1, but expresses all costs in terms of cost per function point: 

Table 2  Cost per Function Point for Six Forms of Testing  
(Assumes $75.75 per staff hour for costs)    
(Assumes 100 function points in the application)   
      
 Writing Running Repairing TOTAL $ Number of 
 Test Cases Test Cases Defects PER F.P. Defects 
      
      
Unit test $12.50 $7.50 $189.38 $209.38 50 
      
Function test $12.50 $7.50 $75.75 $95.75 20 
      
Regression test $12.50 $7.50 $37.88 $57.88 10 
      
Performance test $12.50 $7.50 $18.94 $38.94 5 
      
System test $12.50 $7.50 $11.36 $31.36 3 
      
Acceptance test $12.50 $7.50 $3.79 $23.79 1 

 

The advantage of defect removal cost per function point over cost per defect is that it 
actually matches the assumptions of standard economics.  In other words, as quality 
improves and defect volumes decline, cost per function point tracks these benefits and 
also declines.  High quality is shown to be cheaper than poor quality, while with cost per 
defect high quality is incorrectly shown as being more expensive. 
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However, quality has more benefits to software applications than just those associated 
with defect removal activities.  The most significant benefit of high quality is that it leads 
to shorter development schedules and cheaper overall costs for both development and 
maintenance.  The total savings from high quality are much greater than the 
improvements in defect removal expenses. 

Why Cost per Defect Understates the Economic Value of Quality 

Assume you have a staff of 100 people working on a large software project in a large 
company.  At a burdened cost of $10,000 per month the monthly burn rate is $1,000,000 
for the project.  The cost per hour for each staff member is $75.75. 

Assume you find 1000 defects via static analysis and fix them at a rate of 3 hours per 
defect, which amounts to $227.25 per defect or $227,250 in total.  (Static analysis has a 
low cost per defect because preparation costs are minimal and execution costs are low.) 

You assume that if these same 1000 defects are found later during system test the effort 
will be 8 hours per defect or $606.00 each.  The total cost would be $606,000. 

Your savings from early removal will be equal to: 

 $606,000 - $227,250 = $378,750.   

By dividing the cost of early defect removal into the savings from early defect removal, 
the nominal return on investment (ROI) would be: 

 $378,750 / $227,250 = $1.66 

While this calculation does show some value associated with higher quality, there is 
another factor that needs to be addressed with even greater value. 

If the 1000 defects had not been found early, the whole project would have slipped by a 
month during testing.  This is because a major source of schedule delays is that of 
excessive defects when testing starts. 

Therefore with early defect removal via static analysis, the project would be delivered 
one month earlier than by using testing alone.  This means that the true value of early 
defect removal is not just the cost of removal per se, but the savings to the entire project 
by finishing one month earlier and reducing total costs by $1,000,000. 

The value of early defect removal or the economic value of high quality can now be 
calculated with these additional savings, as follows: 

 $1,378,750 / $227,250 = $6.07 
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When the value of early delivery is added to the value from cheaper defect removal, the 
true economic value of high quality can now be seen and the nominal ROI rises from 
$1.66 to $6.07.  What this means is that “cost per defect” ignores the most significant 
value topic associated with high quality levels and therefore understates the value of 
quality by several hundred percent. 

When economic analysis switches from cost per defect to total value including reduced 
schedules, the results show another dimension that is also missing from cost per defect.  
With cost per defect there is very little difference between a small project of 100 function 
points and a large system of 10,000 function points.  Costs per defect will vary 
somewhat, but not very much. 

However, when economic analysis includes the savings associated with shorter 
schedules, it will be seen that the economic value of quality is directly proportional to the 
size of the application measured with function points.  The larger the application, the 
more valuable high quality becomes.  This phenomenon cannot be measured using cost 
per defect, but it can be measured using economic analysis based on total application 
schedules and costs. 

Why the Economic Value of Quality Goes Up with Application Size 

Because “cost per defect” is not suitable for showing either the total economic value of 
quality or the relationship between quality and application size, this section illustrates a 
method of measuring economic quality value based on total development plus one year of 
maintenance. 
 
To reduce the number of variables all of the examples are assumed to be coded in the C 
programming language, and have a ratio of about 125 code statements per function point. 
 
Because all of the examples are assumed to be written in the same programming 
language, productivity and quality can be expressed using the “lines of code” metric 
without distortion.  The “lines of code” metric is invalid for comparisons between unlike 
programming languages. 
 
For each size plateau two cases will be illustrated: average quality and excellent quality.  
The average quality case assumes waterfall development, CMMI level 1, normal testing, 
and nothing special in terms of defect prevention. 
 
The excellent quality case assumes at least CMMI level 3, formal inspections, static 
analysis, rigorous development such as the team software process (TSP), and the use of 
prototypes and joint application design (JAD) for requirements gathering. 
 
Although all of the case studies are derived from actual applications, to make the 
calculations consistent there are a number of simplifying assumptions used.  These 
assumptions include the following key points: 
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• All cost data is based on a fully-burdened cost of $10,000 per staff month.  A staff 

month is considered to have 132 working hours.  This is equivalent to $75.75 per 
hour. 

 
• For each of the six examples, staffing for the “excellent quality” and “average 

quality” are shown as being equal.  In real life excellent quality can be 
accomplished with smaller staffs than poor quality but holding staffing constant 
simplifies the calculations. 

 
• Unpaid overtime is not shown nor is paid overtime.  Slack time and normal lunch 

periods and coffee breaks are not shown. 
 

• Defect potentials are the total numbers of defects found in five categories: 
requirements defects, design defects, code defects, documentation defects, and 
“bad fixes” or secondary defects accidentally included in defect repairs 
themselves. 

 
• Creeping requirements are not shown.  The sizes of the six case studies reflect 

application size as delivered to clients. 
 

• Software reuse is not shown.  All cases can be assumed to reuse about 15% of 
legacy code.  But to simplify assumptions, the defect potentials in the reused code 
and other materials are assumed to equal defect potentials of new material.   
Larger volumes of certified reusable material would significantly improve both 
the quality and productivity of all six case studies and especially so for the larger 
systems above 10,000 function points in size.. 

 
• Bad-fix injections are not shown.  About 7% of attempts to repair bugs 

accidentally introduce a new bug, but the mathematics of bad-fix injection is 
complicated since the bugs are not found in the activity where they originate. 

 
• The first year of maintenance is assumed to find 100% of latent bugs delivered 

with the software.  In reality many bugs fester for years, but the examples only 
show the first year of maintenance. 

 
• The maintenance data only shows defect repairs.  Enhancements and adding new 

features are excluded in order to highlight quality value. 
 

• Maintenance defect repair rates are based on average values of 12 bugs fixed per 
staff month.  In real life there are wide ranges that can run from less than 4 to 
more than 20 bugs repaired each month. 

 
• Application staff size is based on U.S. average assignment scopes for all classes 

of software personnel, which is approximately 150 function points.  That is, if you 
divide application size in function points by the total staffing complement of 
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technical workers plus project managers, the result will be close to 150 function 
points.  This value includes software engineers and also specialists such as quality 
assurance, technical writers, and test personnel. 

 
• Schedules for the “average” cases are based on raising function point size to the 

0.4 power.  This rule of thumb provides a fairly good approximation of schedules 
from start of requirements to delivery in terms of calendar months. 

 
• Schedules for the “excellent” cases are based on raising function point size to the 

0.36 power.  This exponent works well with object-oriented software and rigorous 
development practices.  It is a fairly good fit for Agile applications too, although 
the lack of really large Agile projects leaves the upper range uncertain. 

 
• Data in this section is expressed using the function point metric defined by the 

International Function Point Users’ Group (IFPUG) version 4.2 of the counting 
rules.  Other functional metrics such as COSMIC function points or engineering 
function points or Mark II function points would yield different results from the 
values shown here. 

 
• Data on source code in this section is expressed using counts of logical statements 

rather than counts of physical lines.  There can be as much as 500% difference in 
apparent code size based on whether counts are physical or logical lines.  The 
counting rules are those of the author’s book Applied Software Measurement. 

 
The reason for these simplifying assumptions is to minimize extraneous variations among 
the case studies, so that the data is presented in a consistent fashion for each.   Because all 
of these assumptions vary in real life, readers are urged to try out alternate values based 
on their own local data or on benchmarks from organizations such as the International 
Software Benchmark Standards Group (ISBSG). 
 
The simplifying assumptions serve to make the results consistent, but each of the 
assumptions can change in either direction by fairly large amounts. 
 
To clarify how various economic metrics work, the following tables include data based 
on function points, on lines of code (LOC), and on cost per defect. 
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The Value of Quality for Very Small Applications of 100 Function Points 
 
Small applications in this range usually have low defect potentials and fairly high defect 
removal efficiency levels.  This is because such small applications can be developed by a 
single person, so there are no interface problems between features developed by different 
individuals or different teams. 
 
Table 4:  Quality Value for 100 Function Point Applications 
(Note: 100 function points = 12,500 C statements)  
    
 Average Excellent Difference 
 Quality Quality  
    
Defects per Function Point 3.50 1.50 -2.00 
    
Defect Potential 350 150 -200.00 
    
Defect Removal Efficiency 94.00% 99.00% 5.00% 
    
Defects Removed 329 149 -181 
    
Defects Delivered 21 2 -20 
    
Cost per Defect $379 $455 $76 
Pre-Release    
    
Cost per Defect $1,061 $1,288 $227 
Post Release    
    
Development Schedule 6 5 -1 
(Calendar Months)    
    
Development Staffing 1 1 0 
    
Development Effort 6 5 -1 
(Staff Months)    
    
Development Costs $63,096 $52,481 -$10,615 
    
Function Points 15.85 19.05 3.21 
per Staff Month    
    
LOC per Staff Month 1,981 2,382 401 
    
Maintenance Staff 1 1 0 
    
Maintenance Effort 2 0 -1.63 
(Staff Months)    
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Maintenance Costs $17,500 $1,250 -$16,250 
(Year 1)    
    
TOTAL EFFORT 8 5 -3 
    
TOTAL COST $80,596 $53,731 -$26,865 
    
TOTAL COST  $40,298 $26,865 -$13,432 
PER STAFF MEMBER    
    
TOTAL COST  $805.96 $537.31 -$269 
PER FUNCTION POINT    
    
TOTAL COST PER LOC $6.45 $4.30 -$2.15 
    
AVERAGE COST $720 $871 $152 
PER DEFECT    

 
Note that cost per defect goes up as quality improves; not down.  This phenomenon 
distorts economic analysis.  As will be shown in the later examples, cost per defect tends 
to decline as applications grow larger.  This is because large applications have many 
more defects than small ones. 
 
Prototypes or applications in this size range are very sensitive to individual skill levels, 
primarily because one person does almost all of the work.  The measured variations for 
this size range are about 5 to 1 in how much code gets written for a given specification 
and about 6 to 1 in terms of productivity and quality levels.  Therefore “average” values 
need to be used with caution.  Averages are particularly unreliable for applications where 
one person performs the bulk of the entire application. 
 
 
The Value of Quality for Small Applications of 1,000 Function Points 
 
For small applications of 1,000 function points quality is of course important, but it is 
also somewhat easier to achieve than it is for large systems.  At this size range teams are 
small and methods such as Agile development tend to be dominant, other than for 
systems and embedded software where more rigorous methods such as the team software 
process (TSP) and the rational unified process (RUP) are more common.   Table 5 shows 
the value of quality for small applications in the 1,000 function point size range: 
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Table 5:  Quality Value for 1,000 Function Point Applications 
(Note: 1000 function points = 125,000 C statements)  
    
 Average Excellent Difference 
 Quality Quality  
    
Defects per Function Point 4.50 2.50 -2.00 
    
Defect Potential 4,500 2,500 -2,000 
    
Defect Removal Efficiency 93.00% 97.00% 4.00% 
    
Defects Removed 4,185 2,425 -1,760 
    
Defects Delivered 315 75 -240.00 
    
Cost per Defect $341 $417 $76 
Pre-Release    
    
Cost per Defect $909 $1,136 $227 
Post Release    
    
Development Schedule 16 12 -4 
(Calendar Months)    
    
Development Staffing 7 7 0.00 
    
Development Effort 106 80 -26 
(Staff Months)    
    
Development Costs $1,056,595 $801,510 -$255,086 
    
Function Points 9.46 12.48 3.01 
per Staff Month    
    
LOC per Staff Month 1,183 1,560 376.51 
    
Maintenance Staff 2 2 0 
    
Maintenance Effort 26 6 -20.00 
(Staff Months)    
    
Maintenance Costs $262,500 $62,500 -$200,000 
(Year 1)    
    
TOTAL EFFORT 132 86 -46 
    
TOTAL COST $1,319,095 $864,010 -$455,086 
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TOTAL COST $158,291 $103,681 -$54,610 
PER STAFF MEMBER    
    
TOTAL COST  $1,319.10 $864.01 -$455 
PER FUNCTION POINT    
    
TOTAL COST PER LOC $10.55 $6.91 -$3.64 
    
AVERAGE COST $625 $776 $152 
PER DEFECT    

 
The bulk of the savings for the “excellent” column shown in table 4 would come from 
shorter testing schedules due to the use of requirements, design, and code inspections.  
Other changes that added value include the use of team software process (TSP), static 
analysis prior to testing, and the achievement of higher CMMI levels. 
 
In the size range of 1,000 function points numerous methods are fairly effective.  For 
example both Agile development and Extreme programming report good results in this 
size range as do the Rational Unified Process (RUP) and the Team Software Process 
(TSP).. 
 
The Value of Quality for Large Applications of 10,000 Function Points 
 
When software applications reach 10,000 function points in size, they are very significant 
systems that require close attention to quality control, change control, and corporate 
governance.  In fact without careful quality and change control, the odds of failure or 
cancellation top 35% for this size range. 
 
Note that as application size increases, defect potentials increase rapidly and defect 
removal efficiency levels decline, even with sophisticated quality control steps in place.  
This is due to the exponential increase in the volume of paperwork for requirements and 
design, which often leads to partial inspections rather than 100% inspections.  For large 
systems, test coverage declines and the number of test cases mounts rapidly but cannot 
usually keep pace with complexity. 
 
Table 6:  Quality Value for 10,000 Function Point Applications 
(Note: 10,000 function points = 1,250,000 C statements)  
    
 Average Excellent Difference 
 Quality Quality  
    
Defects per Function Point 6.00 3.50 -2.50 
    
Defect Potential 60,000 35,000 -25,000 
    
Defect Removal Efficiency 84.00% 96.00% 12.00% 
    
Defects Removed 50,400 33,600 -16,800 
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Defects Delivered 9,600 1,400 -8,200 
    
Cost per Defect $341 $417 $76 
Pre-Release    
    
Cost per Defect $833 $1,061 $227 
Post Release    
    
Development Schedule 40 28 -12 
(Calendar Months)    
    
Development Staffing 67 67 0.00 
    
Development Effort 2,654 1,836 -818 
(Staff Months)    
    
Development Costs $26,540,478 $18,361,525 -$8,178,953 
    
Function Points 3.77 5.45 1.68 
per Staff Month    
    
LOC per Staff Month 471 681 209.79 
    
Maintenance Staff 17 17 0 
    
Maintenance Effort 800 117 -683.33 
(Staff Months)    
    
Maintenance Costs $8,000,000 $1,166,667 -$6,833,333 
(Year 1)    
    
TOTAL EFFORT 3,454 1,953 -1501 
(STAFF MONTHS)    
    
TOTAL COST $34,540,478 $19,528,191 -$15,012,287 
    
TOTAL COST $414,486 $234,338 -$180,147 
PER STAFF MEMBER    
    
TOTAL COST  $3,454.05 $1,952.82 -$1,501.23 
PER FUNCTION POINT    
    
TOTAL COST PER LOC $27.63 $15.62 -$12.01 
    
AVERAGE COST $587 $739 $152 
PER DEFECT    

 
Cost savings from better quality increase as application sizes increase.  The general rule 
is that the larger the software application the more valuable quality becomes.  The same 
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principle is true for change control, because the volume of creeping requirements goes up 
with application size. 
 
Return on Investment for Achieving Software Quality Excellence 
 
As already mentioned the value of software quality goes up as application size goes up.  
Table 7 calculates the approximate return on investment for the “excellent” case studies 
of 100 function points, 1,000 function points, and 10,000 function points.. 
 
Here too the assumptions are simplified to make calculations easy and understandable.  
The basic assumption is that every software team member needs 80 hours of training to 
get up to speed in software inspections, static analysis, and the team software process 
(TSP).  These training hours are then multiplied by average hourly costs of $75.75 per 
employee. 
 
(Note that the costs of ascending the CMMI levels from 1 to 3 are not shown since they 
are not related to specific projects.  CMMI expenses are costs associated with business 
units.  If CMMI training were included, about another 160 hours of training per staff 
member would be needed over a multi-year period.) 
 
These training expenses are then divided into the total savings figure that includes both 
development and maintenance savings due to high quality.  The final result is the 
approximate ROI based on dividing value by training expenses.  Table 6 illustrates the 
ROI calculations: 
 
Table 7: Return on Investment in Software Quality  
    
Function Point Size 100 1,000 10,000 
    
Education Hours 80 560 5,360 
    
Education Costs $6,060 $42,420 $406,020 
    
Savings from High Quality $26,865 $455,086 $15,012,287 
    
Return on Investment (ROI) $4.43 $10.73 $36.97 

 
The ROI figure reflects the total savings divided by the total training expenses needed to 
bring team members up to speed in quality technologies.  In real life these simple 
assumptions would vary widely, and other factors might also be considered.  Even so, 
high levels of software quality have a very solid return on investment due to the reduction 
in development schedules, development costs, and maintenance costs. 
 
There are many other topics where software engineers and managers need training, and 
their may be other cost elements such as the costs of ascending to the higher levels of the 
capability maturity model.  While the savings from high-quality are frequently observed, 
the exact ROI will vary based on the way training and process improvement work is 
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handled under local accounting rules. 
 
If the reduced risks of cancelled projects or major overruns were included in the ROI 
calculations, the value would be even higher. 
 
Other technologies such as high volumes of certified reusable material would also have a 
beneficial impact on both quality and productivity.  However as this book is written in 
2009 there are only limited sources available for certified reusable materials.  Uncertified 
reuse is hazardous and may even be harmful rather than beneficial. 
 
Since this paper deals with some of the shortcomings of the “cost per defect” metric, it is 
instructive to see what happens to this metric across the six examples.  Unfortunately cost 
per defect moves in the opposite direction from true economic value, and achieves its 
lowest levels for the largest, buggiest example! 
 

• The lowest average cost per defect in the six examples is $520 and that occurs for 
the largest, buggiest example in table 5. 

 
• The highest average cost per defect in the six examples is $871 and that occurs for 

the smallest, highest quality example in table 3. 
 
As already mentioned, cost per defect is cheapest where defect volumes are greatest.  
This phenomenon leads to some unpleasant surprises for those interested in software 
process improvement.  One of these surprises is that cost per defect for CMMI level 1 
applications is much lower than for CMMI level 5 applications.  This is because at 
CMMI level 5 there are very few defects but a great deal of effort goes into testing and 
defect removal, much of it in the form of fixed costs for writing and running test cases. 
 
Unfortunately because cost per defect simultaneously penalizes quality and also ignores 
the main economic value of quality, which centers on shorter schedules and lower costs 
for the entire application, it is not a suitable metric for economic studies. 
 
To study the economic value of quality, comparing the total costs of ownership (TCO) of 
high-quality and low-quality projects during both development and maintenance gives the 
most accurate value data.  Of course these are long-range studies that don’t produce 
instant results. 
 
For short-term studies function-point metrics at least match the assumptions of standard 
economics, since as quality improves cost per function point declines.  However function 
point analysis is somewhat expensive to perform, which is why this method is not as 
widely deployed as it might be.  The advent of high-speed, low-cost function point 
analysis methods will no doubt increase the usage of function points for quality and 
economic studies. 
 
It is an interesting question as to why the cost per defect metric continues to be used even 
though it produces invalid results.  There seem to be both technical and sociological 
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reasons for cost per defect to remain so popular in the software engineering and quality 
literature. 
 
The technical reason is that the one of the main problems with cost per defect is not 
clearly visible until quality starts to approach zero-defect status.  For applications with 
hundreds or thousands of bugs, the costs of defect repairs are so much higher than the 
fixed costs of preparation and execution that the problem is hard to detect. 
 
One sociological reason has to do with cognitive dissonance, or the psychology of 
opinion formation.  This theory was developed by Dr. Leon Festinger, and turns out to be 
surprisingly important in situations where new ideas compete with older ideas.  Once an 
idea becomes firmly entrenched, people tend to cling to it strongly, and initially reject 
evidence that is counter to the belief.  Only when the evidence becomes overwhelming is 
there a change in belief patterns.   
 
Yet another sociological reason is that cost per defect is among the easiest and cheapest 
metrics to calculate.  Not only that, but the resulting data seems to indicate that early 
defect removal is extremely valuable, which it is.  Even if the math is suspect, the cost 
per defect metric tends to show benefits from early defect removal. 
 
Because  the cost per defect metric is so easy to use and seems to provide valuable 
results, many people stop at this point and fail to realize that over and above defect 
repairs, software quality adds value by shortening total schedules and lowering both 
development and maintenance costs.  Neither of these value-added topics can be studied 
via cost per defect metrics. 
 
To study the true economics of software quality, side-by-side comparisons are needed of 
both development and maintenance.  To normalize the data, function point metrics are the 
most stable and accurate.  (Lines of code vary widely by language, and hence cannot be 
used to compare applications written in different languages.) 
 
Summary and Conclusions on the Economic Value of Quality 
 
In spite of the fact that the software industry spends more money on finding and fixing 
bugs than any other activity, software quality remains ambiguous and poorly covered in 
the software engineering literature. 
 
There are dozens of books on software quality and testing, but hardly any of them contain 
quantitative data on defect volumes, numbers of test cases, test coverage, or the costs 
associated with defect removal activities. 
 
Even worse, much of the literature on quality merely cites urban legends of how “cost per 
defect” rises throughout development and into the field”, without realizing that such a 
trend is caused by ignoring fixed costs and may not reflect actual economic facts. 
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Software quality does have value, and the value increases as application sizes get bigger.  
In fact, without excellence in quality control even completing a large software application 
is highly unlikely.  Completing it on time and within budget in the absence of excellent 
quality control is essentially impossible. 

The economic value of software quality is due to two factors:  1) Reduction in defect 
repair costs; 2) Reduction in development and maintenance costs.  The first of these 
factors is handled in a distorted fashion by the cost per defect metric, and the second 
factor is not handled at all.   Serious economic analysis of software quality needs 
additional metrics besides cost per defect, and better measurement methods as well. 
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