
	
 1	

A SHORT HISTORY OF THE COST PER DEFECT METRIC

Version 1.1. May 5, 2009

Abstract

The oldest metric for software quality economic study is that of “cost per defect.” While
there may be earlier uses, the metric was certainly used within IBM by the late 1960’s for
software; and probably as early as 1950’s for hardware.

As commonly calculated the cost-per-defect metric measures the hours associated with
defect repairs and the numbers of defects repaired and then multiplies the results by
burdened costs per hour.

The cost-per-defect-metric has developed into an urban legend, with hundreds of
assertions in the literature that early defect detection and removal is cheaper than late
defect detection and removal by more than 10 to 1. This is true mathematically, but there
is a problem with the cost per defect calculations that will be discussed in the article. As
will be shown, cost per defect is always cheapest where the greatest numbers of defects
are found. As quality improves, cost per defect gets higher until zero defects are
encountered, where the cost per defect metric goes to infinity.

More importantly the cost-per-defect metric tends to ignore the major economic value of
improved quality: shorter development schedules and reduced development costs outside
of explicit defect repairs.

Capers Jones, President, Capers Jones & Associates LLC

Email: CJonesiii@cs.com.

Copyright © 2009 by Capers Jones & Associates LLC. All rights reserved.

	
 2	

INTRODUCTION

The cost-per-defect metric has been in continuous use since the 1970’s for examining the
economic value of software quality. Hundreds of journal articles and scores of books
include stock phrases, such as “it costs 100 times as much to fix a defect after release as
during early development.”

Typical data for cost per defect varies from study to study but resembles the following
pattern circa 2009:

Defects found during requirements = $250

Defects found during design = $500

Defects found during coding and testing = $1,250

Defects found after release = $5,000

While such claims are often true mathematically, there are three hidden problems with
cost per defect that are usually not discussed in the software literature:

1. Cost per defect penalizes quality and is always cheapest where the greatest
numbers of bugs are found.

2. Because more bugs are found at the beginning of development than at the end, the
increase in cost per defect is artificial. Actual time and motion studies of defect
repairs show little variance from end to end.

3. Even if calculated correctly, cost per defect does not measure the true economic
value of improved software quality. Over and above the costs of finding and
fixing bugs, high quality leads to shorter development schedules and overall
reductions in development costs. These savings are not included in cost per
defect calculations, so the metric understates the true value of quality by several
hundred percent.

Let us consider these problem areas using examples that illustrate the main points..

	
 3	

Why Cost per Defect Penalizes Quality

The well-known and widely cited “cost per defect measure” unfortunately violates the
canons of standard economics. Although this metric is often used to make quality
economic claims, its main failing is that it penalizes quality and achieves the best results
for the buggiest applications!

Furthermore, when zero-defect applications are reached there are still substantial
appraisal and testing activities that need to be accounted for. Obviously the “cost per
defect” metric is useless for zero-defect applications.

As with KLOC metrics discussed in another paper, the main source of error is that of
ignoring fixed costs. Three examples will illustrate how “cost per defect” behaves as
quality improves.

In all three cases, A, B, and C, we can assume that test personnel work 40 hours per week
and are compensated at a rate of $2,500 per week or $75.75 per hour using fully burdened
costs. Assume that all three software features that are being tested are 100 function
points in size.

Case A: Poor Quality

Assume that a tester spent 15 hours writing test cases, 10 hours running them, and 15
hours fixing 10 bugs. The total hours spent was 40 and the total cost was $2,500. Since
10 bugs were found, the cost per defect was $250. The cost per function point for the
week of testing would be $25.00.

Case B: Good Quality

In this second case assume that a tester spent 15 hours writing test cases, 10 hours
running them, and 5 hours fixing one bug, which was the only bug discovered.

However since no other assignments were waiting and the tester worked a full week 40
hours were charged to the project. The total cost for the week was still $2,500 so the cost
per defect has jumped to $2,500.

If the 10 hours of slack time are backed out, leaving 30 hours for actual testing and bug
repairs, the cost per defect would be $2,273.50 for the single bug.

As quality improves, “cost per defect” rises sharply. The reason for this is that writing
test cases and running them act like fixed costs. It is a well-known law of manufacturing
economics that:

“If a manufacturing cycle includes a high proportion of fixed costs and there is a
reduction in the number of units produced, the cost per unit will go up.”

	
 4	

As an application moves through a full test cycle that includes unit test, function test,
regression test, performance test, system test, and acceptance test the time required to
write test cases and the time required to run test cases stays almost constant; but the
number of defects found steadily decreases..

Table 1 shows the approximate costs for the three cost elements of preparation,
execution, and repair for the test cycles just cited using the same rate of $:75.75 per hour
for all activities:

Table 1: Cost per Defect for Six Forms of Testing
(Assumes $75.75 per staff hour for costs)

 Writing Running Repairing TOTAL Number of $ per

 Test Cases
Test

Cases Defects COSTS Defects Defect

Unit test $1,250.00 $750.00 $18,937.50 $20,937.50 50 $418.75

Function test $1,250.00 $750.00 $7,575.00 $9,575.00 20 $478.75

Regression test $1,250.00 $750.00 $3,787.50 $5,787.50 10 $578.75

Performance
test $1,250.00 $750.00 $1,893.75 $3,893.75 5 $778.75

System test $1,250.00 $750.00 $1,136.25 $3,136.25 3 $1,045.42

Acceptance test $1,250.00 $750.00 $378.75 $2,378.75 1 $2,378.75

What is most interesting about table 1 is that cost per defect rises steadily as defect
volumes come down, even though table 1 uses a constant value of 5 hours to repair
defects for every single test stage! In other words every defect identified throughout
table 1 had a constant cost of $378.25 when only repairs are considered.

In fact all three columns use constant values and the only true variable in the example is
the number of defects found. In real life, of course, preparation, execution, and repairs
would all be variables. But by making them constant, it is easier to illustrate the main
point: cost per defect rises as numbers of defects decline.

Since the main reason that cost per defect goes up as defects decline is due to the fixed
costs associated with preparation and execution, it might be thought that those costs could
be backed out and leave only defect repairs. Doing this would change the apparent
results and minimize the errors, but it would introduce three new problems:

	
 5	

1. Removing quality cost elements that may total more than 50% of total quality
costs would make it impossible to study quality economics with precision and
accuracy.

2. Removing preparation and execution costs would make it impossible to calculate
cost of quality (COQ) because the calculations for COQ demand all quality cost
elements.

3. Removing preparation and execution costs would make it impossible to compare
testing against formal inspections, because inspections do record preparation and
execution as well as defect repairs.

Backing out or removing preparation and execution costs would be like going on a low-
carb diet and not counting the carbs in pasta and bread, but only counting the carbs in
meats and vegetables. The numbers might look good, but the results in real life would
not be good.

Let us now consider cost per function point as an alternative metric for measuring the
costs of defect removal. With the slack removed the cost per function point would be
$18.75. As can easily be seen cost per defect goes up as quality improves, thus violating
the assumptions of standard economic measures. However, as can also be seen, testing
cost per function point declines as quality improves. This matches the assumptions of
standard economics. The 10 hours of slack time illustrate another issue: when quality
improves defects can decline faster than personnel can be reassigned.

Case C: Zero Defects

In this third case assume that a tester spent 15 hours writing test cases and 10 hours
running them. No bugs or defects were discovered.

Because no defects were found, the “cost per defect” metric cannot be used at all. But 25
hours of actual effort were expended writing and running test cases. If the tester had no
other assignments, he or she would still have worked a 40 hour week and the costs would
have been $2,500.

If the 15 hours of slack time are backed out, leaving 25 hours for actual testing, the costs
would have been $1,893.75. With slack time removed, the cost per function point would
be $18.38. As can be seen again, testing cost per function point declines as quality
improves. Here too, the decline in cost per function point matches the assumptions of
standard economics.

Time and motion studies of defect repairs do not support the aphorism that “it costs 100
times as much to fix a bug after release as before.” Bugs typically require between 15
minutes and 6 hours to repair regardless of where they are found.

	
 6	

(There are some bugs that are expensive and may takes several days to repair, or even
longer. These are called “abeyant defects” by IBM. Abeyant defects are customer-
reported defects which the repair center cannot recreate, due to some special combination
of hardware and software at the client site. Abeyant defects comprise less than 5% of
customer-reported defects.)

Considering that cost per defect has been among the most widely used quality metrics for
more than 50 years, the literature is surprisingly ambiguous about what activities go into
“cost per defect.” More than 75% of the articles and books that use cost per defect
metrics do not state explicitly whether preparation and executions costs are included or
excluded. In fact a majority of articles do not explain anything at all, but merely show
numbers without discussing what activities are included.

Another major gap is that the literature is silent on variations in cost per defect by
severity level. A study done by the author at IBM showed these variations in defect
repair intervals associated with severity levels.

 Table 2 shows the results of the study. Since these are customer-reported defects,
“preparation and execution” would have been carried out by customers and the amounts
were not reported to IBM.

Table 2: Defect Repair Hours by Severity Levels for Field Defects

 Severity 1 Severity 2 Severity 3 Severity 4 Invalid Average

> 40 hours 1.00% 3.00% 0.00% 0.00% 0.00% 0.80%

30 - 39
hours 3.00% 12.00% 1.00% 0.00% 1.00% 3.40%

20 - 29
hours 12.00% 20.00% 8.00% 0.00% 4.00% 8.80%

10 - 19
hours 22.00% 32.00% 10.00% 0.00% 12.00% 15.20%

1 - 9 hours 48.00% 22.00% 56.00% 40.00% 25.00% 38.20%

> 1 hour 14.00% 11.00% 25.00% 60.00% 58.00% 33.60%

TOTAL 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

As can be seen, the overall average would be close to perhaps 5 hours, although the range
is quite wide.

	
 7	

In table 2, severity 1 defects mean that the software has stopped working. Severity 2
means that major features are disabled. Severity 3 refers to minor defects. Severity 4
defects are cosmetic in nature and do not affect operations. Invalid defects are hardware
problems or customer errors inadvertently reported as software defects. A surprisingly
large amount of time and effort goes into dealing with invalid defects although this topic
is seldom discussed in the quality literature.

Using Function Point Metrics for Defect Removal Economics

Because of the fixed or inelastic costs associated with defect removal operations, cost per
defect always increases as numbers of defects decline. Because more defects are found at
the beginning of a testing cycle than after release, this explains why cost per defect
always goes up later in the cycle.

An alternate way of showing the economics of defect removal is to switch from “cost per
defect” and use “defect removal cost per function point”. Table 3 uses the same basic
information as Table 1, but expresses all costs in terms of cost per function point:

Table 2 Cost per Function Point for Six Forms of Testing
(Assumes $75.75 per staff hour for costs)
(Assumes 100 function points in the application)

 Writing Running Repairing TOTAL $ Number of
 Test Cases Test Cases Defects PER F.P. Defects

Unit test $12.50 $7.50 $189.38 $209.38 50

Function test $12.50 $7.50 $75.75 $95.75 20

Regression test $12.50 $7.50 $37.88 $57.88 10

Performance test $12.50 $7.50 $18.94 $38.94 5

System test $12.50 $7.50 $11.36 $31.36 3

Acceptance test $12.50 $7.50 $3.79 $23.79 1

The advantage of defect removal cost per function point over cost per defect is that it
actually matches the assumptions of standard economics. In other words, as quality
improves and defect volumes decline, cost per function point tracks these benefits and
also declines. High quality is shown to be cheaper than poor quality, while with cost per
defect high quality is incorrectly shown as being more expensive.

	
 8	

However, quality has more benefits to software applications than just those associated
with defect removal activities. The most significant benefit of high quality is that it leads
to shorter development schedules and cheaper overall costs for both development and
maintenance. The total savings from high quality are much greater than the
improvements in defect removal expenses.

Why Cost per Defect Understates the Economic Value of Quality

Assume you have a staff of 100 people working on a large software project in a large
company. At a burdened cost of $10,000 per month the monthly burn rate is $1,000,000
for the project. The cost per hour for each staff member is $75.75.

Assume you find 1000 defects via static analysis and fix them at a rate of 3 hours per
defect, which amounts to $227.25 per defect or $227,250 in total. (Static analysis has a
low cost per defect because preparation costs are minimal and execution costs are low.)

You assume that if these same 1000 defects are found later during system test the effort
will be 8 hours per defect or $606.00 each. The total cost would be $606,000.

Your savings from early removal will be equal to:

 $606,000 - $227,250 = $378,750.

By dividing the cost of early defect removal into the savings from early defect removal,
the nominal return on investment (ROI) would be:

 $378,750 / $227,250 = $1.66

While this calculation does show some value associated with higher quality, there is
another factor that needs to be addressed with even greater value.

If the 1000 defects had not been found early, the whole project would have slipped by a
month during testing. This is because a major source of schedule delays is that of
excessive defects when testing starts.

Therefore with early defect removal via static analysis, the project would be delivered
one month earlier than by using testing alone. This means that the true value of early
defect removal is not just the cost of removal per se, but the savings to the entire project
by finishing one month earlier and reducing total costs by $1,000,000.

The value of early defect removal or the economic value of high quality can now be
calculated with these additional savings, as follows:

 $1,378,750 / $227,250 = $6.07

	
 9	

When the value of early delivery is added to the value from cheaper defect removal, the
true economic value of high quality can now be seen and the nominal ROI rises from
$1.66 to $6.07. What this means is that “cost per defect” ignores the most significant
value topic associated with high quality levels and therefore understates the value of
quality by several hundred percent.

When economic analysis switches from cost per defect to total value including reduced
schedules, the results show another dimension that is also missing from cost per defect.
With cost per defect there is very little difference between a small project of 100 function
points and a large system of 10,000 function points. Costs per defect will vary
somewhat, but not very much.

However, when economic analysis includes the savings associated with shorter
schedules, it will be seen that the economic value of quality is directly proportional to the
size of the application measured with function points. The larger the application, the
more valuable high quality becomes. This phenomenon cannot be measured using cost
per defect, but it can be measured using economic analysis based on total application
schedules and costs.

Why the Economic Value of Quality Goes Up with Application Size

Because “cost per defect” is not suitable for showing either the total economic value of
quality or the relationship between quality and application size, this section illustrates a
method of measuring economic quality value based on total development plus one year of
maintenance.

To reduce the number of variables all of the examples are assumed to be coded in the C
programming language, and have a ratio of about 125 code statements per function point.

Because all of the examples are assumed to be written in the same programming
language, productivity and quality can be expressed using the “lines of code” metric
without distortion. The “lines of code” metric is invalid for comparisons between unlike
programming languages.

For each size plateau two cases will be illustrated: average quality and excellent quality.
The average quality case assumes waterfall development, CMMI level 1, normal testing,
and nothing special in terms of defect prevention.

The excellent quality case assumes at least CMMI level 3, formal inspections, static
analysis, rigorous development such as the team software process (TSP), and the use of
prototypes and joint application design (JAD) for requirements gathering.

Although all of the case studies are derived from actual applications, to make the
calculations consistent there are a number of simplifying assumptions used. These
assumptions include the following key points:

	
 10	

• All cost data is based on a fully-burdened cost of $10,000 per staff month. A staff

month is considered to have 132 working hours. This is equivalent to $75.75 per
hour.

• For each of the six examples, staffing for the “excellent quality” and “average

quality” are shown as being equal. In real life excellent quality can be
accomplished with smaller staffs than poor quality but holding staffing constant
simplifies the calculations.

• Unpaid overtime is not shown nor is paid overtime. Slack time and normal lunch

periods and coffee breaks are not shown.

• Defect potentials are the total numbers of defects found in five categories:
requirements defects, design defects, code defects, documentation defects, and
“bad fixes” or secondary defects accidentally included in defect repairs
themselves.

• Creeping requirements are not shown. The sizes of the six case studies reflect

application size as delivered to clients.

• Software reuse is not shown. All cases can be assumed to reuse about 15% of
legacy code. But to simplify assumptions, the defect potentials in the reused code
and other materials are assumed to equal defect potentials of new material.
Larger volumes of certified reusable material would significantly improve both
the quality and productivity of all six case studies and especially so for the larger
systems above 10,000 function points in size..

• Bad-fix injections are not shown. About 7% of attempts to repair bugs

accidentally introduce a new bug, but the mathematics of bad-fix injection is
complicated since the bugs are not found in the activity where they originate.

• The first year of maintenance is assumed to find 100% of latent bugs delivered

with the software. In reality many bugs fester for years, but the examples only
show the first year of maintenance.

• The maintenance data only shows defect repairs. Enhancements and adding new

features are excluded in order to highlight quality value.

• Maintenance defect repair rates are based on average values of 12 bugs fixed per
staff month. In real life there are wide ranges that can run from less than 4 to
more than 20 bugs repaired each month.

• Application staff size is based on U.S. average assignment scopes for all classes

of software personnel, which is approximately 150 function points. That is, if you
divide application size in function points by the total staffing complement of

	
 11	

technical workers plus project managers, the result will be close to 150 function
points. This value includes software engineers and also specialists such as quality
assurance, technical writers, and test personnel.

• Schedules for the “average” cases are based on raising function point size to the

0.4 power. This rule of thumb provides a fairly good approximation of schedules
from start of requirements to delivery in terms of calendar months.

• Schedules for the “excellent” cases are based on raising function point size to the

0.36 power. This exponent works well with object-oriented software and rigorous
development practices. It is a fairly good fit for Agile applications too, although
the lack of really large Agile projects leaves the upper range uncertain.

• Data in this section is expressed using the function point metric defined by the

International Function Point Users’ Group (IFPUG) version 4.2 of the counting
rules. Other functional metrics such as COSMIC function points or engineering
function points or Mark II function points would yield different results from the
values shown here.

• Data on source code in this section is expressed using counts of logical statements

rather than counts of physical lines. There can be as much as 500% difference in
apparent code size based on whether counts are physical or logical lines. The
counting rules are those of the author’s book Applied Software Measurement.

The reason for these simplifying assumptions is to minimize extraneous variations among
the case studies, so that the data is presented in a consistent fashion for each. Because all
of these assumptions vary in real life, readers are urged to try out alternate values based
on their own local data or on benchmarks from organizations such as the International
Software Benchmark Standards Group (ISBSG).

The simplifying assumptions serve to make the results consistent, but each of the
assumptions can change in either direction by fairly large amounts.

To clarify how various economic metrics work, the following tables include data based
on function points, on lines of code (LOC), and on cost per defect.

	
 12	

The Value of Quality for Very Small Applications of 100 Function Points

Small applications in this range usually have low defect potentials and fairly high defect
removal efficiency levels. This is because such small applications can be developed by a
single person, so there are no interface problems between features developed by different
individuals or different teams.

Table 4: Quality Value for 100 Function Point Applications
(Note: 100 function points = 12,500 C statements)

 Average Excellent Difference
 Quality Quality

Defects per Function Point 3.50 1.50 -2.00

Defect Potential 350 150 -200.00

Defect Removal Efficiency 94.00% 99.00% 5.00%

Defects Removed 329 149 -181

Defects Delivered 21 2 -20

Cost per Defect $379 $455 $76
Pre-Release

Cost per Defect $1,061 $1,288 $227
Post Release

Development Schedule 6 5 -1
(Calendar Months)

Development Staffing 1 1 0

Development Effort 6 5 -1
(Staff Months)

Development Costs $63,096 $52,481 -$10,615

Function Points 15.85 19.05 3.21
per Staff Month

LOC per Staff Month 1,981 2,382 401

Maintenance Staff 1 1 0

Maintenance Effort 2 0 -1.63
(Staff Months)

	
 13	

Maintenance Costs $17,500 $1,250 -$16,250
(Year 1)

TOTAL EFFORT 8 5 -3

TOTAL COST $80,596 $53,731 -$26,865

TOTAL COST $40,298 $26,865 -$13,432
PER STAFF MEMBER

TOTAL COST $805.96 $537.31 -$269
PER FUNCTION POINT

TOTAL COST PER LOC $6.45 $4.30 -$2.15

AVERAGE COST $720 $871 $152
PER DEFECT

Note that cost per defect goes up as quality improves; not down. This phenomenon
distorts economic analysis. As will be shown in the later examples, cost per defect tends
to decline as applications grow larger. This is because large applications have many
more defects than small ones.

Prototypes or applications in this size range are very sensitive to individual skill levels,
primarily because one person does almost all of the work. The measured variations for
this size range are about 5 to 1 in how much code gets written for a given specification
and about 6 to 1 in terms of productivity and quality levels. Therefore “average” values
need to be used with caution. Averages are particularly unreliable for applications where
one person performs the bulk of the entire application.

The Value of Quality for Small Applications of 1,000 Function Points

For small applications of 1,000 function points quality is of course important, but it is
also somewhat easier to achieve than it is for large systems. At this size range teams are
small and methods such as Agile development tend to be dominant, other than for
systems and embedded software where more rigorous methods such as the team software
process (TSP) and the rational unified process (RUP) are more common. Table 5 shows
the value of quality for small applications in the 1,000 function point size range:

	
 14	

Table 5: Quality Value for 1,000 Function Point Applications
(Note: 1000 function points = 125,000 C statements)

 Average Excellent Difference
 Quality Quality

Defects per Function Point 4.50 2.50 -2.00

Defect Potential 4,500 2,500 -2,000

Defect Removal Efficiency 93.00% 97.00% 4.00%

Defects Removed 4,185 2,425 -1,760

Defects Delivered 315 75 -240.00

Cost per Defect $341 $417 $76
Pre-Release

Cost per Defect $909 $1,136 $227
Post Release

Development Schedule 16 12 -4
(Calendar Months)

Development Staffing 7 7 0.00

Development Effort 106 80 -26
(Staff Months)

Development Costs $1,056,595 $801,510 -$255,086

Function Points 9.46 12.48 3.01
per Staff Month

LOC per Staff Month 1,183 1,560 376.51

Maintenance Staff 2 2 0

Maintenance Effort 26 6 -20.00
(Staff Months)

Maintenance Costs $262,500 $62,500 -$200,000
(Year 1)

TOTAL EFFORT 132 86 -46

TOTAL COST $1,319,095 $864,010 -$455,086

	
 15	

TOTAL COST $158,291 $103,681 -$54,610
PER STAFF MEMBER

TOTAL COST $1,319.10 $864.01 -$455
PER FUNCTION POINT

TOTAL COST PER LOC $10.55 $6.91 -$3.64

AVERAGE COST $625 $776 $152
PER DEFECT

The bulk of the savings for the “excellent” column shown in table 4 would come from
shorter testing schedules due to the use of requirements, design, and code inspections.
Other changes that added value include the use of team software process (TSP), static
analysis prior to testing, and the achievement of higher CMMI levels.

In the size range of 1,000 function points numerous methods are fairly effective. For
example both Agile development and Extreme programming report good results in this
size range as do the Rational Unified Process (RUP) and the Team Software Process
(TSP)..

The Value of Quality for Large Applications of 10,000 Function Points

When software applications reach 10,000 function points in size, they are very significant
systems that require close attention to quality control, change control, and corporate
governance. In fact without careful quality and change control, the odds of failure or
cancellation top 35% for this size range.

Note that as application size increases, defect potentials increase rapidly and defect
removal efficiency levels decline, even with sophisticated quality control steps in place.
This is due to the exponential increase in the volume of paperwork for requirements and
design, which often leads to partial inspections rather than 100% inspections. For large
systems, test coverage declines and the number of test cases mounts rapidly but cannot
usually keep pace with complexity.

Table 6: Quality Value for 10,000 Function Point Applications
(Note: 10,000 function points = 1,250,000 C statements)

 Average Excellent Difference
 Quality Quality

Defects per Function Point 6.00 3.50 -2.50

Defect Potential 60,000 35,000 -25,000

Defect Removal Efficiency 84.00% 96.00% 12.00%

Defects Removed 50,400 33,600 -16,800

	
 16	

Defects Delivered 9,600 1,400 -8,200

Cost per Defect $341 $417 $76
Pre-Release

Cost per Defect $833 $1,061 $227
Post Release

Development Schedule 40 28 -12
(Calendar Months)

Development Staffing 67 67 0.00

Development Effort 2,654 1,836 -818
(Staff Months)

Development Costs $26,540,478 $18,361,525 -$8,178,953

Function Points 3.77 5.45 1.68
per Staff Month

LOC per Staff Month 471 681 209.79

Maintenance Staff 17 17 0

Maintenance Effort 800 117 -683.33
(Staff Months)

Maintenance Costs $8,000,000 $1,166,667 -$6,833,333
(Year 1)

TOTAL EFFORT 3,454 1,953 -1501
(STAFF MONTHS)

TOTAL COST $34,540,478 $19,528,191 -$15,012,287

TOTAL COST $414,486 $234,338 -$180,147
PER STAFF MEMBER

TOTAL COST $3,454.05 $1,952.82 -$1,501.23
PER FUNCTION POINT

TOTAL COST PER LOC $27.63 $15.62 -$12.01

AVERAGE COST $587 $739 $152
PER DEFECT

Cost savings from better quality increase as application sizes increase. The general rule
is that the larger the software application the more valuable quality becomes. The same

	
 17	

principle is true for change control, because the volume of creeping requirements goes up
with application size.

Return on Investment for Achieving Software Quality Excellence

As already mentioned the value of software quality goes up as application size goes up.
Table 7 calculates the approximate return on investment for the “excellent” case studies
of 100 function points, 1,000 function points, and 10,000 function points..

Here too the assumptions are simplified to make calculations easy and understandable.
The basic assumption is that every software team member needs 80 hours of training to
get up to speed in software inspections, static analysis, and the team software process
(TSP). These training hours are then multiplied by average hourly costs of $75.75 per
employee.

(Note that the costs of ascending the CMMI levels from 1 to 3 are not shown since they
are not related to specific projects. CMMI expenses are costs associated with business
units. If CMMI training were included, about another 160 hours of training per staff
member would be needed over a multi-year period.)

These training expenses are then divided into the total savings figure that includes both
development and maintenance savings due to high quality. The final result is the
approximate ROI based on dividing value by training expenses. Table 6 illustrates the
ROI calculations:

Table 7: Return on Investment in Software Quality

Function Point Size 100 1,000 10,000

Education Hours 80 560 5,360

Education Costs $6,060 $42,420 $406,020

Savings from High Quality $26,865 $455,086 $15,012,287

Return on Investment (ROI) $4.43 $10.73 $36.97

The ROI figure reflects the total savings divided by the total training expenses needed to
bring team members up to speed in quality technologies. In real life these simple
assumptions would vary widely, and other factors might also be considered. Even so,
high levels of software quality have a very solid return on investment due to the reduction
in development schedules, development costs, and maintenance costs.

There are many other topics where software engineers and managers need training, and
their may be other cost elements such as the costs of ascending to the higher levels of the
capability maturity model. While the savings from high-quality are frequently observed,
the exact ROI will vary based on the way training and process improvement work is

	
 18	

handled under local accounting rules.

If the reduced risks of cancelled projects or major overruns were included in the ROI
calculations, the value would be even higher.

Other technologies such as high volumes of certified reusable material would also have a
beneficial impact on both quality and productivity. However as this book is written in
2009 there are only limited sources available for certified reusable materials. Uncertified
reuse is hazardous and may even be harmful rather than beneficial.

Since this paper deals with some of the shortcomings of the “cost per defect” metric, it is
instructive to see what happens to this metric across the six examples. Unfortunately cost
per defect moves in the opposite direction from true economic value, and achieves its
lowest levels for the largest, buggiest example!

• The lowest average cost per defect in the six examples is $520 and that occurs for
the largest, buggiest example in table 5.

• The highest average cost per defect in the six examples is $871 and that occurs for

the smallest, highest quality example in table 3.

As already mentioned, cost per defect is cheapest where defect volumes are greatest.
This phenomenon leads to some unpleasant surprises for those interested in software
process improvement. One of these surprises is that cost per defect for CMMI level 1
applications is much lower than for CMMI level 5 applications. This is because at
CMMI level 5 there are very few defects but a great deal of effort goes into testing and
defect removal, much of it in the form of fixed costs for writing and running test cases.

Unfortunately because cost per defect simultaneously penalizes quality and also ignores
the main economic value of quality, which centers on shorter schedules and lower costs
for the entire application, it is not a suitable metric for economic studies.

To study the economic value of quality, comparing the total costs of ownership (TCO) of
high-quality and low-quality projects during both development and maintenance gives the
most accurate value data. Of course these are long-range studies that don’t produce
instant results.

For short-term studies function-point metrics at least match the assumptions of standard
economics, since as quality improves cost per function point declines. However function
point analysis is somewhat expensive to perform, which is why this method is not as
widely deployed as it might be. The advent of high-speed, low-cost function point
analysis methods will no doubt increase the usage of function points for quality and
economic studies.

It is an interesting question as to why the cost per defect metric continues to be used even
though it produces invalid results. There seem to be both technical and sociological

	
 19	

reasons for cost per defect to remain so popular in the software engineering and quality
literature.

The technical reason is that the one of the main problems with cost per defect is not
clearly visible until quality starts to approach zero-defect status. For applications with
hundreds or thousands of bugs, the costs of defect repairs are so much higher than the
fixed costs of preparation and execution that the problem is hard to detect.

One sociological reason has to do with cognitive dissonance, or the psychology of
opinion formation. This theory was developed by Dr. Leon Festinger, and turns out to be
surprisingly important in situations where new ideas compete with older ideas. Once an
idea becomes firmly entrenched, people tend to cling to it strongly, and initially reject
evidence that is counter to the belief. Only when the evidence becomes overwhelming is
there a change in belief patterns.

Yet another sociological reason is that cost per defect is among the easiest and cheapest
metrics to calculate. Not only that, but the resulting data seems to indicate that early
defect removal is extremely valuable, which it is. Even if the math is suspect, the cost
per defect metric tends to show benefits from early defect removal.

Because the cost per defect metric is so easy to use and seems to provide valuable
results, many people stop at this point and fail to realize that over and above defect
repairs, software quality adds value by shortening total schedules and lowering both
development and maintenance costs. Neither of these value-added topics can be studied
via cost per defect metrics.

To study the true economics of software quality, side-by-side comparisons are needed of
both development and maintenance. To normalize the data, function point metrics are the
most stable and accurate. (Lines of code vary widely by language, and hence cannot be
used to compare applications written in different languages.)

Summary and Conclusions on the Economic Value of Quality

In spite of the fact that the software industry spends more money on finding and fixing
bugs than any other activity, software quality remains ambiguous and poorly covered in
the software engineering literature.

There are dozens of books on software quality and testing, but hardly any of them contain
quantitative data on defect volumes, numbers of test cases, test coverage, or the costs
associated with defect removal activities.

Even worse, much of the literature on quality merely cites urban legends of how “cost per
defect” rises throughout development and into the field”, without realizing that such a
trend is caused by ignoring fixed costs and may not reflect actual economic facts.

	
 20	

Software quality does have value, and the value increases as application sizes get bigger.
In fact, without excellence in quality control even completing a large software application
is highly unlikely. Completing it on time and within budget in the absence of excellent
quality control is essentially impossible.

The economic value of software quality is due to two factors: 1) Reduction in defect
repair costs; 2) Reduction in development and maintenance costs. The first of these
factors is handled in a distorted fashion by the cost per defect metric, and the second
factor is not handled at all. Serious economic analysis of software quality needs
additional metrics besides cost per defect, and better measurement methods as well.

READINGS ON SOFTWARE QUALITY AND SOFTWARE ECONOMICS

Beck, Kent; Test-Driven Development; Addison Wesley, Boston, MA; 2002; ISBN 10:
0321146530; 240 pages.

Boehm, Barry Dr.; Software Engineering Economics; Prentice Hall, Englewood Cliffs,
NJ; 1981; 900 pages.

Bundschuh, Manfred and Deckers, Carol; The IT Measurement Compendium; Springer
Verlag, 2008; ISBN 978-3-540-68187-8; 643 pages..

Chelf, Ben and Jetley, Raoul; “Diagnosing Medical Device Software Defects Using Static
Analysis”; Coverity Technical Report, San Francisco, CA; 2008.

Chess, Brian and West, Jacob; Secure Programming with Static Analysis; Addison
Wesley, Boston, MA; 20007; ISBN 13: 978-0321424778; 624 pages.

Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You; Prentice
Hall, Upper Saddle River, NJ; 1995; ISBN 10: 0201633302; 368 pages.

Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New York,
NY; 1979; 270 pages.

Ebert, C. and Dumke, R.: Software Measurement – Establish, Extract, Evaluate, Execute;
Springer Verlag, 2007; ISBN 978-3-540-71648-8.

Everett, Gerald D. And McLeod, Raymond; Software Testing; John Wiley & Sons,
Hoboken, NJ; 2007; ISBN 978-0-471-79371-7; 261 pages.

Festinger, Leon: Theory of Cognitive Dissonance; Stanford University Press, 1957;
ISBN-10 0804701318; 291 pages.

	
 21	

Gack, Gary; Applying Six Sigma to Software Implementation Projects;
http://software.isixsigma.com/library/content/c040915b.asp.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA;
1993; ISBN 10: 0201631814.

Hallowell, David L.; Six Sigma Software Metrics, Part 1.;
http://software.isixsigma.com/library/content/03910a.asp.

International Organization for Standards; ISO 9000 / ISO 14000;
http://www.iso.org/iso/en/iso9000-14000/index.html.

Jones, Capers; Software Quality – Analysis and Guidelines for Success; International
Thomson Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.

Jones,	
 Capers;	
 Applied	
 Software	
 Measurement;	
 McGraw	
 Hill,	
 3rd	
 edition,	
 2008;	
 ISBN	

978-­‐0-­‐07-­‐150244-­‐3;	
 662	
 pages.	

Jones, Capers; Estimating Software Costs; McGraw Hill, New York; 2007; ISBN 13-
978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison Wesley
Longman, Boston, MA; ISBN 0-201-48542-7; 2000; 657 pages.

Jones, Capers: “Sizing Up Software;” Scientific American Magazine, Volume 279, No. 6,
December 1998; pages 104-111.

Jones; Capers; “A Short History of the Lines of Code Metric”; Version 4.0; May 2008;
Capers Jones & Associates LLC; Narragansett, RI; 15 pages (monograph).

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition;
Addison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Land, Susan K; Smith, Douglas B; Walz, John Z; Practical Support for Lean Six Sigma
Software Process Definition: Using IEEE Software Engineering Standards;
WileyBlackwell; 2008; ISBN 10: 0470170808; 312 pages.

Mosley, Daniel J.; The Handbook of MIS Application Software Testing; Yourdon Press,
Prentice Hall; Englewood Cliffs, NJ; 1993; ISBN 0-13-907007-9; 354 pages.

Myers, Glenford; The Art of Software Testing; John Wiley & Sons, New York; 1979;
ISBN 0-471-04328-1; 177 pages.

Nandyal; Raghav; Making Sense of Software Quality Assurance; Tata McGraw Hill
Publishing, New Delhi, India; 2007; ISBN 0-07-063378-9; 350 pages.

	
 22	

Radice, Ronald A.; High Quality Low Cost Software Inspections; Paradoxicon
Publishingl Andover, MA; ISBN 0-9645913-1-6; 2002; 479 pages.

Tassey, Gregory J.; The Economic Impacts of Inadequate Infrastructure of Software
Testing; National Institute of Standards and Technology (NIST); May 2002; RTI
Project Number 7007.011.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley
Longman, Boston, MA; ISBN 0-201-73485-0; 2002; 232 pages.

	

	

	
 23	

