
The Triptych Process Model 1

Process Assessment and Improvement

Dines Bjørner

Computer Science and Engineering

Informatics and Mathematical Modelling

Technical University of Denmark

DK-28000 Kgs.Lyngby

Denmark

Graduate School of Information Science

Japan Adv. Inst. of Science & Technology

1-1, Asahidai, Tatsunokuchi

Nomi, Ishikawa 923-1292

Japan

bjorner@gmail.com

June 14, 2006. Compiled November 17, 2006

Dedicated to Kouichi Kishida

Abstract

The triptych2 approach to software engineering proceeds on the basis of carefully
monitored and controlled possibly iterated progression through domain engineering and
requirements engineering to software design.

In this paper we will outline these three phases, show the many stages of develop-
ment within each and also indicate the many steps within each stage. We will ever so
briefly touch upon informal narration and formal description (prescription and specifi-
cation) of domains (requirements and software designs), and the verification (theorem
proving, model checking and testing) and validation of domain descriptions (requirements
prescriptions and their relations to domain descriptions, as well as the software design
specifications and their relations to requirements prescriptions). The importance of pro-
cess management and its relations to software process assessment (SPA) and software
process improvement (SPI) will then be underscored. Our measuring “stick” is that set
up by Watts Humphrey’s capability maturity model (CMM). We will suggest and discuss
seven assessment and eight improvement categories. In closing we will have some few
words to say about software procurement.

Contents

1 The Triptych Dogma 3

1.1 Background . 3
1.2 The Dogma . 3
1.3 New Aspects . 3

2 The Triptych Process Models and Documents 3

2.1 Common Aspects . 3
2.1.1 Process Models . 3
2.1.2 Documents . 4

2.2 The Domain Engineering Process Model . 5
2.2.1 Domain Models . 5
2.2.2 Domain Engineering, A Narrative . 5
2.2.3 Domain Engineering Documents . 6

1Seminar at Tokyo University in Honour of Kouichi Kishida’s 70’th Anniversary
2The term ‘triptych’ covers the three phases of software development: domain description, requirements

prescription and software design.

1

2 November 17, 2006 — Dines Bjørner: The Triptych Process Model

2.2.4 Domain Engineering Stages and Steps . 6

2.3 The Requirements Engineering Process Model . 7

2.3.1 The Machine . 7

2.3.2 Requirements Models . 7

2.3.3 Requirements Engineering, A Narrative . 8

2.3.4 Requirements Engineering Documents . 8

2.3.5 Requirements Engineering Stages and Steps . 8

2.4 The Software Design Process Model . 8

2.4.1 Software Design, A Narrative . 9

2.4.2 Software Design Documents . 9

2.4.3 Software Design Stages and Steps . 9

3 Review of the Triptych Process 9

3.1 The Process Model: Diagrams and Tables-of-content . 9

3.2 Process Model Semantics . 10

3.3 Informal versus Formal Development . 11

3.4 Adherence to Phases, Stages and Steps . 12

4 Process Assessment and Improvement Management 12

4.1 Notions of ‘Process Assessment’ and ‘Improvement’ . 12

4.2 The CMM: Capability Maturity Model . 15

4.3 Process Models and Processes . 16

4.3.1 Graphs and Graph Traversal Traces . 16

4.3.2 Process Models and Processes . 17

4.3.3 Incomplete and Extraneous Processes . 18

4.3.4 Process Iterations . 18

4.3.5 Degrees of Process Model Compliance . 18

4.3.6 A “Base 0” for Triptych Developments . 19

4.4 Proactive Measures . 20

4.4.1 Project Development Graphs . 20

4.4.2 Management . 21

Planning — Scheduling and Allocation: . 21

Monitoring & Controlling Resource Usage: . 21

4.4.3 From Informal to Formal Development . 22

Informal Development: . 22

Systematic, Rigorous and Formal Development: . 23

Staff Qualification: . 23

4.4.4 Tools . 24

Tool Qualification: . 24

4.5 Review of Process Assessment and Process Improvement Issues . 24

4.6 Hindrances to Process Assessment and Improvement . 26

4.6.1 Lack of Knowledge of Methodology . 26

4.6.2 Generation Gaps . 26

4.6.3 Lack of Tools . 26

4.6.4 Lack of Acceptance . 26

5 Conclusion 27

5.1 Summary . 27

5.2 Future . 27

5.3 Software Procurement . 27

5.3.1 Software . 27

5.3.2 Procurement . 27

6 Laudatio 28

References 28

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 3

1 The Triptych Dogma

1.1 Background

In the past, as exemplified in major software engineering textbooks [1, 2, 3, 4, 5, 6], software
engineering focused on requirements engineering and software design. The triptych dogma ex-
tends the two (requirements engineering and software design) into three (domain engineering
plus the two phases already mentioned).

1.2 The Dogma

• Justifying requirements prescriptions:

– Before software can be designed

– we must understand the requirements.

• Justifying domain descriptions.

– Before requirements can be prescribed

– we must understand the domain.

• Justifying the triptych:

– First analysing and describing the (application) domain,

– then analysing and prescribing the requirements, and

– finally analysing and specifying the software design and code.

1.3 New Aspects

The relatively new aspect of software development is here ‘domain engineering’. This new
aspect “translates” into a number of new methodological aspects of domain and requirements
engineering. The next, the major section will survey these aspects. All of this is covered
extensively in volume 3 of the three volume book [7, 8, 9]. All 11 figures in this paper are
re-used from [9](by permission from the book publisher).

2 The Triptych Process Models and Documents

2.1 Common Aspects

2.1.1 Process Models

The triptych process model is the composition of three process models: one each for domain
engineering, requirements engineering and software design. We hint at this composition in
Fig. 1 on the following page.

The internals of the three boxes (i.e., phases of development) of Fig. 1 on the next page
are outlined in Figs. 4 on page 7, 8 on page 11 and 9 on page 12, respectively Fig. 11 on
page 14.

The DO edges of Fig. 1 on the following page enter topmost boxes of respective Figs. 4 on
page 7, 8 on page 11 and 11 on page 14.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

4 November 17, 2006 — Dines Bjørner: The Triptych Process Model

Domain Engineering

Software Design

Requirements Engineering

REDO

REDO

REDO

DO

DO

Software Engineering

= Software Development

Figure 1: A simplified view of the triptych process model

The REDO edges of Fig. 1 enter whichever boxes of Figs. 4 on page 7, 8 on page 11 and 9 on
page 12, respectively Fig. 11 on page 14 that are found to be most appropriate. (More on
this later.)

2.1.2 Documents

Common to all three phases of software development are that they primarily manifest them-
selves in documents. Figure 3 on page 6, Figs. 5 on page 9, 6 on page 10, and 7 on page 11, and
Fig. 10 on page 13, to be commented later, illustrate the breadth, depth and quite substan-
tial number of such resulting documents. And common to each set of such documents is the
more-or-less administrative “working out” of information document, cf. items 1 of Figs. 3 on
page 6, 5 on page 9, 6 on page 10, 7 on page 11, and 10 on page 13. Figure 2 extracts item
1. from Figs. 3 on page 6, 5 on page 9, 6 on page 10, and 7 on page 11, and 10 on page 13.

1. Information

(a) Name, Place and Date

(b) Partners

(c) Current Situation

(d) Needs and Ideas

(e) Concepts and Facilities

(f) Scope and Span

(g) Assumptions and Dependencies

(h) Implicit/Derivative Goals

(i) Synopsis

(j) Standards Compliance

(k) Contracts

(l) The Teams

i. Management

ii. Developers

iii. Client Staff

iv. Consultants

(m) Plans

i. Project Graph

ii. Budget

iii. Funding

iv. Accounts

(n) Management

i. Assessement

ii. Improvement

A. Plans

B. Actions

Figure 2: Informative documents

Let us briefly review the import of Fig. 2. In any of the three phases of development, domain

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 5

engineering, requirements engineering and software design, the information implied by the
table-of-contents of Fig. 2 on the facing page must be carefully worked out. Take items ‘As-
sumptions and Dependencies’, and ‘Implicit/Derivative Goals’. The description, prescription
or design work to be done in the phase to which the information documents apply rely on
assumptions and dependencies. These must be fully understood, hence documented before
any proper development takes place. Consider items ‘Current Situation’, ‘Needs and Ideas’,
and ‘Concepts and Facilities’. The current situation which apparently warrants the proper
development must be recorded. It might change thus necessitating change of development.
Development — of whichever of the three phases — would not be undertaken unless some-
one, the customer and/or the developer, has some needs for the (approximately) expected
results of the development, and, as well, has some ideas as how (methodologically) to basi-
cally develop whatever is to be developed (a domain description, a requirements description,
a software design). The customer and/or developer also, initially have made some thoughts
of the core concepts and facilities around which the development is expected to take place.
All of this need be properly recorded as any review of project status occurs in the pragmatic
context of ‘Assumptions and Dependencies’, ‘Implicit/Derivative Goals’, ‘Current Situation’,
‘Needs and Ideas’, and ‘Concepts and Facilities’.

2.2 The Domain Engineering Process Model

We first rough-sketch narrate the stages and steps of the domain engineering development of
a domain model, then review the documents that should emanate from such development.
Finally we diagram an essence of the narration and the document table-of-contents.

But first some words on domain models.

2.2.1 Domain Models

A main result of domain engineering development, as applied to some specific application
domain3, is a domain model. Domain models are in the form of descriptions. Domain descrip-
tions describe what there is, and as it is. There is no presumption of requirements implied by
these descriptions. They are not requirements prescriptions. By analogy, physicists [domain
engineers] are describing mother nature [application domains] and engineers [requirements
engineers and software designers] are prescribing and implementing requirements.

2.2.2 Domain Engineering, A Narrative

The domain engineering triptych dogma, and as argued in Chaps. 8–17 of [9], advocates
(item 2.) the following stages of description development (after work on information doc-
uments [items 1.a–l] have been duly completed): (2.a) identification of as wide a spectrum
of domain stakeholders, (2.b) acquisition of domain understanding, (2.c) establishment (and
subsequent, throughout all stages, use and maintenance) of a domain terminology (ontolog-
ical terms), (2.d) understanding and rough-sketching all relevant business processes, (2.e)
domain modelling (all domain facets), and (2.f) the domain model completion (including
consolidation). Intertwined with the domain description parts (item 2., subitems (a–f))
are the analysis parts with (3.a) analysis aiming at identifying inconsistencies, conflicts and

3Examples of domains are: (1) the financial service industry as a whole, (1.1) a bank, (1.1.1) a bank’s
mortgage lending business; (2) the transportation industry as a whole, (2.1) a railway system, (2.1.1) an
interlocking system; etcetera.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

6 November 17, 2006 — Dines Bjørner: The Triptych Process Model

incompletenesses, (3.b) domain validation, (3.c) domain verification,and (3.d) possible work
on establishing a domain theory.

The new thing here is all of items 1.–2.–3.

2.2.3 Domain Engineering Documents

1. Information

(a) Name, Place and Date

(b) Partners

(c) Current Situation

(d) Needs and Ideas

(e) Concepts and Facilities

(f) Scope and Span

(g) Assumptions and Dependencies

(h) Implicit/Derivative Goals

(i) Synopsis

(j) Standards Compliance

(k) Contracts

(l) The Teams

i. Management

ii. Developers

iii. Client Staff

iv. Consultants

(m) Plans

i. Project Graph

ii. Budget

iii. Funding

iv. Accounts

(n) Management

i. Assessement

ii. Improvement

A. Plans

B. Actions

2. Descriptions

(a) Stakeholders

(b) The Acquisition Process

i. Studies

ii. Interviews

iii. Questionnaires

iv. Indexed Description Units

(c) Terminology

(d) Business Processes

(e) Facets:

i. Intrinsics

ii. Support Technologies

iii. Management and
Organisation

iv. Rules and Regulations

v. Scripts

vi. Human Behaviour

(f) Consolidated Description

3. Analyses

(a) Domain Analysis and
Concept Formation

i. Inconsistencies

ii. Conflicts

iii. Incompletenesses

iv. Resolutions

(b) Domain Validation

i. Stakeholder Walkthroughs

ii. Resolutions

(c) Domain Verification

i. Model Checkings

ii. Theorems and Proofs

iii. Test Cases and Tests

(d) (Towards a) Domain Theory

Figure 3: Domain engineering document table-of-contents

Figure 3 summarises the plenitude of highly interrelated sets of documents that must all be
carefully worked out and carefully correlated.

2.2.4 Domain Engineering Stages and Steps

Figure 4 on the facing page diagrams, in box-and-edge form, the stages and steps of domain
engineering development and their interrelations. The diagram does not give a correct “pic-

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 7

Identification and Liaison
Stakeholder

Elicitation Studies

Elicitation Interviews

Preparation, Presentation

Description Unit Indexing

DOMAIN

Domain Modelling

Scripts

Domain

Concept Formation

Domain Theory R&D

DOMAIN MODELLING

Support Technologies

Human Behaviour

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapters 10−11

Chapter 11

DOMAIN
DEVELOPMENT

Chapter 9

Analysis and

Rules and Regulations

Business Processes

Intrinsics

Organisation
Management and

Questionnaire

Fill−out, and Return

Domain
Validation and
Verification

Stakeholder Identification

ACQUISITION

Figure 4: The domain engineering process model diagram

ture” of the necessity for iteration: going “backwards and forwards” across the development,
i.e., across the diagram. Obviously, having a precise understanding of the syntax, semantics
and pragmatics of boxes and edges, helps developers and their managers monitor and control
(including “contain”) iterations.

2.3 The Requirements Engineering Process Model

We first rough-sketch narrate the stages and steps of the requirements engineering develop-
ment of a requirements model, then review the documents that should emanate from such
development. Finally we diagram an essence of the narration and the document table-of-
contents.

But first some words on “the machine” and on requirements models.

2.3.1 The Machine

Requirements is about prescribing the machine: the hardware and the software which shall
implement the requirements. The machine resides in the domain. Once developed we shall
sometimes refer to that domain as the environment of the machine — with the machine +
that environment becoming a new domain.

2.3.2 Requirements Models

A main result of requirements engineering development, as applied to some specific appli-
cation domain4, is a requirements model. Domain models are in the form of descriptions.

4Examples of domains are: (1) the financial service industry as a whole, (1.1) a bank, (1.1.1) a bank’s
mortgage lending business; (2) the transportation industry as a whole, (2.1) a railway system, (2.1.1) an
interlocking system; etcetera.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

8 November 17, 2006 — Dines Bjørner: The Triptych Process Model

Requirements prescriptions prescribe what there should be.

2.3.3 Requirements Engineering, A Narrative

The requirements engineering triptych dogma, and as argued in Chaps. 18–26 of [9], advocates
(item 2.) the following stages of prescription development (after work on information docu-
ments [items 1.a–l] have been duly completed): (2.a) identification of as wide a spectrum of
requirements stakeholders, (2.b) acquisition of requirements statements, (2.c) rough-sketching
first ideas of a requirements model in order to (“eureka”) discover un-formulated requirements,
(2.d) establishment (and subsequent, throughout all stages, use and maintenance) of a require-
ments terminology (ontological terms), and (2.e) requirements modelling of all requirements
facets: (2.e.i) business process reengineering (BPR),

(2.e.ii) domain requirements, (2.e.iii) interface requirements, (2.e.iv) machine require-
ments, and (2.e.v) completion of a full requirements prescription. Intertwined with the
requirements prescription parts (item 2., subitems (a–e)) are the analysis parts with (3.a)
analysis aiming at identifying inconsistencies, conflicts and incompletenesses, (3.b) require-
ments validation, (3.c) requirements verification, and (3.d) possible work on establishing a
requirements theory.

The new things here are the way in which (2.b) ‘acquisition of requirements statements’
is pursued, and items (2.c) and (2.c subitems i., ii., and iii.). Essentially (2.b) questionnaires
are formulated on the basis of assumed existing domain specifications.

Essentially the questionnaires and the rough sketching of a domain and interface require-
ments model, after analysis of the requirements statements (3.a), is pursued basically as fol-
lows (2.e.ii): which of the entities, functions, events and behaviours described in the domain
model must be partially or fully supported by the machine being requirements prescribed?
Must those (entities, functions, events and behaviours) being so selected (i.e., projected) be
made more determinate, and/or more concretely instantiated, and/or extended, and/or fitted
with, or to other, elsewhere developed requirements? Similar for business processes of the
“original” domain. Usually they need be reconsidered (2.e.i). Etcetera.

2.3.4 Requirements Engineering Documents

Figures 5 on the next page, 6 on page 10 and 7 on page 11 summarise the plenitude of highly
interrelated sets of documents that must all be carefully worked out and carefully correlated.

2.3.5 Requirements Engineering Stages and Steps

Figure 8 on page 11 and 9 on page 12 diagram, in box-and-edge form, the stages and steps
of requirements engineering development and their interrelations. The diagram does not give
a correct “picture” of the necessity for iteration: going “backwards and forwards” across
the development, i.e., across the diagram. Obviously, having a precise understanding of the
syntax, semantics and pragmatics of boxes and edges, helps developers and their managers
monitor and control (including “contain”) iterations.

2.4 The Software Design Process Model

We first rough-sketch narrate the stages and steps of software design development of a software
architecture (etc.), then review the documents that should emanate from such development.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 9

1. Information

(a) Name, Place and Date

(b) Partners

(c) Current Situation

(d) Needs and Ideas (Eurekas, I)

(e) Concepts & Facilities (Eurekas, II)

(f) Scope & Span

(g) Assumptions & Dependencies

(h) Implicit/Derivative Goals

(i) Synopsis (Eurekas, III)

(j) Standards Compliance

(k) Contracts, with Design Brief

(l) The Teams

i. Management

ii. Developers

iii. Client Staff

iv. Consultants

(m) Plans

i. Project Graph

ii. Budget

iii. Funding

iv. Accounts

(n) Management

i. Assessement

ii. Improvement

A. Plans

B. Actions

Figure 5: Requirements engineering document table-of-contents: information documents

Finally we diagram an essence of the narration and the document table-of-contents.

2.4.1 Software Design, A Narrative

The software design process is here simplified into four stages (Fig. 10 on page 13 items 2.a–
d): software architecture design, component design, module design, and (module) program
coding. Each of these may consist of two or more steps of development (cf. Fig. 11 on page 14).
Between adjacent steps there is a correctness obligation (V:MC:T, verification, model checking
and testing). Verification proofs usually are of the kind: D,S |= R which means that the
proof that the Software implements the Requirements entails reference to the D.

2.4.2 Software Design Documents

Figure 10 on page 13 summarises the plenitude of highly interrelated sets of documents that
must all be carefully worked out and carefully correlated.
2.4.3 Software Design Stages and Steps

Figure 11 on page 14 diagram, in box-and-edge form, the stages and steps of software design
development and their interrelations. The diagram does not give a correct “picture” of the ne-
cessity for iteration: going “backwards and forwards” across the development, i.e., across the
diagram. Obviously, having a precise understanding of the syntax, semantics and pragmat-
ics of boxes and edges, helps developers and their managers monitor and control (including
“contain”) iterations.

3 Review of the Triptych Process

3.1 The Process Model: Diagrams and Tables-of-content

We have surveyed the (mainly) software development processes according to the triptych
dogma. We have seen that these processes can be diagrammed and also be “mapped” onto

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

10 November 17, 2006 — Dines Bjørner: The Triptych Process Model

2. Prescriptions

(a) Stakeholders

(b) The Acquisition Process

i. Studies

ii. Interviews

iii. Questionnaires

iv. Indexed Description Units

(c) Rough Sketches (Eurekas, IV)

(d) Terminology

(e) Facets:

i. Business Process Re-engineering

• Sanctity of the Intrinsics

• Support Technology

• Management and Organisation

• Rules and Regulation

• Human Behaviour

• Scripting

ii. Domain Requirements

• Projection

• Determination

• Instantiation

• Extension

• Fitting

iii. Interface Requirements

• Shared Phenomena and Concept
Identification

• Shared Data Initialisation

• Shared Data Refreshment

• Man-Machine Dialogue

• Physiological Interface

• Machine-Machine Dialogue

iv. Machine Requirements

• Performance

– Storage

– Time

– Software Size

• Dependability

– Accessability

– Availability

– Reliability

– Robustness

– Safety

– Security

• Maintenance

– Adaptive

– Corrective

– Perfective

– Preventive

• Platform

– Development Platform

– Demonstration Platform

– Execution Platform

– Maintenance Platform

• Documentation Requirements

• Other Requirements

v. Full Reqs. Facets Doc.

Figure 6: Requirements engineering document table-of-contents: prescription documents

tables-of-content of the documents resulting from respective phases.Of course there is much
more to these three phases, their very many stages (within phases), and their potentially very
many more steps (within stages) than can be covered in paper form.

3.2 Process Model Semantics

Diagrams, such as those of Figs. 1, 4, 8–9 and 11, reflect some pragmatics, has some syntax
and embodies, hopefully some semantics. We wish, here, to emphasise the semantics:

What is important to mention here, justifying this separate section, is that each of
the boxes of the description, prescription and software design parts of Figs. 4 on
page 7, 8 on the next page, 9 on page 12 and 11 on page 14 and each of their inter-
connecting edges embody a clear set of method principles, techniques and tools with
many of these techniques also being pursuable formally and supported, or supportable,
by theory-based tools.

In the following we shall assume that the above paragraph on the semantics of the process
model diagrams is taken for granted.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 11

3. Analyses

(a) Requirements Analysis and Concept Formation

i. Inconsistencies

ii. Conflicts

iii. Incompletenesses

iv. Resolutions

(b) Requirements Validation

i. Stakeholder Walk-through and Reports

ii. Resolutions

(c) Requirements Verification

i. Model Checkings

ii. Theorem Proofs

iii. Test Cases and Tests

(d) Requirements Theory

(e) Satisfaction and Feasibility Studies

i. Satisfaction: Correctness, unambiguity,
completeness, consistency, stability, ver-
ifiability, modifiability, traceability

ii. Feasibility: Technical, economic, BPR

Figure 7: Requirements engineering document table-of-contents: analytic documents

Requirements Analysis
& Concept Formation

Satisfiability
& Feasibility

Liaison

Acquisition
Requirements

Validation
& Verification

Requirements Modelling

Stakeholder

Figure 8: Diagramming a requirements process model

3.3 Informal versus Formal Development

The term ‘development’ covers any combination of the three phases: domain, requirements
or software design only; domain+requirements or requirements+software design, or all three
phases “more-or-less” consecutively.

Development can, as shown in Vol. 3 ([9]) of [7, 8, 9], be pursued informally or formally,
and therefore in any “graded scale” combination of these.

0. Informal development means: no formalisation of domain descriptions, require-
ments prescriptions or software design specifications are attempted. Thus verification cannot
be done using formal proofs or model checking. Only testing.

There are, roughly speaking three “points” on the semi-formal to formal scale of develop-
ment.

1. Systematic development formalises domain descriptions, requirements prescriptions
and software design specifications. But that is just about as much formalisation that is
attempted.

2. Rigorous development extends systematic development by stating all “crucial”5

properties and maybe even sketch or carry through the proof or model checking of properties.

5We do not here further characterise what we mean by ‘crucial’.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

12 November 17, 2006 — Dines Bjørner: The Triptych Process Model

Domain Requirements Machine Requirements

Shared Data Initialisation

Shared Data Refreshment

Physiological Dialogue

Dependability

Interface Requirements

Fitting

Extension

Instantiation

Determination

Projection

BPR

Shared Phenomena

Performance

Availability

Reliability

Safety

Security

Maintainability

Perfective

Adaptive

Corrective

Preventive

Portability

Documentation

Demo Platform

Maintenance Platform

Execution Platform

Development Platform

Accessibility

Man−Machine Dialogue

Machine−Machine

Identification

Dialogue

Requirements Modelling

Figure 9: The requirements modelling stage

3. Formal development requires that all necessary (including correctness) properties
are formally expressed and theorem proved or model checked.

The triptych paradigm allows for any of these latter three (1.–2.–3.) forms of develop-
ment.

3.4 Adherence to Phases, Stages and Steps

It is important to stress the following assumption:

Adhering to the triptych paradigm, to us, means that all phases, stages and steps
as outlined above are followed. This means that documents are produced as per the
tables-of-contents shown in Fig. 3, Figs. 5–7 and Fig. 10.

Our treatment, next, of process assessment and improvement, is based on, i.e., starts with
the above assumption.

4 Process Assessment and Improvement Management

4.1 Notions of ‘Process Assessment’ and ‘Improvement’

In order to speak of ‘assessment’ and ‘improvement’ we must identify that which is being
assessed and improved: the results of following one set of method principles, techniques, tools
and their management, over following another such set. Process assessment is now about
judging adherence of a given process to its process model, pragmatically, semantically and
syntactically (pss, usually in reverse order): to which (pss) degrees does the process fulfill
what is “laid down” in the process model. Process improvement is then about changing
the assessed development processes such that the results of using the changed processes are
assessed to have been improved.

By “assessment” and “improvement” we first of all mean “assessing and improving docu-
ments”. The documents are those emanating from activities denoted by nodes and edges of
the process model.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 13

1. Information

(a) Name, Place and Date

(b) Partners

(c) Current Situation

(d) Needs and Ideas

(e) Concepts and Facilities and Facilities

(f) Scope and Span

(g) Assumptions and Dependencies

(h) Implicit/Derivative Goals

(i) Synopsis

(j) Standards Compliance

(k) Contracts

(l) The Teams

i. Management,

ii. Developers,

iii. Consultants

(m) Plans

i. Project Graph

ii. Budget, Funding, Accounts

(n) Management

i. Assessement Plans & Actions

ii. Improvement Plans & Actions

2. Software Specifications

(a) Architecture Design (Sa1
. . . San)

(b) Component Design (Sc1i
. . . Scnj

)

(c) Module Design (Sm1
. . . Smm)

(d) Program Coding (Sk1
, . . . , Skn

)

3. Analyses

(a) Analysis Objectives and Strategies

(b) Verification (Sip , Si ⊒Li
Si+1)

i. Theorems and Lemmas Li

ii. Proof Scripts ℘i

iii. Proofs Πi

(c) Model Checking (Si ⊒ Pi−1)

i. Model Checkers

ii. Propositions Pi

iii. Model Checks Mi

(d) Testing (Si ⊒ Ti)

i. Manual Testing

• Manual Tests MS1
. . . MSµ

ii. Computerised Testing

A. Unit (or Module) Tests Cu

B. Component Tests Cc

C. Integration Tests Ci

D. System Tests Cs . . . Csits

(e) Evaluation of Adequacy of Analysis

Legend:

S Specification

L Theorem or Lemma

℘i Proof Scripts

Πi Proof Listings

P Proposition

M Model Check (run, report)

T Test Formulation

M Manual Check Report

C Computerised Check (run, report)

⊒ “is correct with respect to (wrt.)”

⊒ℓ “is correct, modulo ℓ, wrt.”

Figure 10: Software design document table-of-contents

Each such box and each such edge may have many documents “attached” to it, and each
such document has its syntax, semantics and pragmatics. The syntax and semantics can
usually be given very precise definitions. Hence we can, in a sense, objectively “measure”
(assess) whether a document “lives up” to that syntax and that semantics! For pragmatics
the “measure” is more subjective. To be able to “measure” process improvement one must
therefore attach to each planned document for each box and each edge a “measure” of com-
pliance. Is a document in 100% compliance with those syntactic, semantics and pragmatic
measures or is it not? Or more precisely: where on a scale from 0 to 1 lies the quality of a
document wrt. an “ideal”.

Software Process Assessment 1 Process Model Syntax and Semantics:

In order to handle process improvement (à la CMM, from a lower to a higher level) —
using the triptych approach — managers (as well as, of course, developers), must be
intimately familiar with the syntax and semantics of the documents produced

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

14 November 17, 2006 — Dines Bjørner: The Triptych Process Model

SA1

SA2

SAm

C11 Cn1

C12 C22 C2n

C21

C1L C2M CnN

K1 K2 Kn

.....

.....

.....

+

.....

++

+ + +

V:MC:T

V:MC:T V:MC:T V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T V:MC:T

V:MC:TV:MC:T

V:MC:T

V:MC:T V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

V:MC:T

DOMAIN DESCRIPTION DEVELOPMENT

REQUIREMENTS PRESCRIPTION DEVELOPMENT

SOFTWARE ARCHITECTURE DEVELOPMENT

COMPONENT

CODING

SOFTWARE

DEVELOPMENT

S
O

F
T

W
A

R
E

 C
O

M
P

O
N

E
N

T
 D

E
V

E
LO

P
M

E
N

T
C

O
D

IN
G

S
O

F
T

W
A

R
E

 A
R

C
H

IT
E

C
T

U
R

E
 D

E
V

E
LO

P
M

E
N

T
P

R
IO

R
 D

E
V

E
LO

P
M

E
N

T
S Domain

Requirements

Software Architecture

Software Components

Figure 11: The software design development processes

and expected to be produced by process model node and edge activities. This
is a strong requirement and can not be expected by just any software development
organisation.

nd there are really no shortcuts.6 Process improvement — wrt. the precision of
monitoring resource usage — is predicated on this assumption: that management is
strongly based on professional awareness of triptych principles, techniques and tools.
The “degree”7 to which a development document adheres to the syntax and semantics
of the relevant box or edge thus provides an assessment.

Several groups, worldwide, the most well known is perhaps Praxis High Integrity Systems,
http://www.praxis-his.com, practices this on a daily basis. So do many members of ForTIA: The
Formal Techniques Industrial Association, www.fortia.org.

Software Process Improvement 1 Process Model Syntax and Seman-

tics: To improve this general aspect of the possible processes that developers and
managers might be able to pursue under the banner of the Triptych Process Model
one simply has to resort to education and training . There is no substitute.

We choose here to also “anchor” our discourse of ‘process improvement’ by referring to the
Capability Maturity Model (CMM) of Watts S. Humphrey (WSH) [5]. CMM postulates five
levels of maturity of development groups. Level 1 being a lowest, in a sense “least desirable”,
and level 5 being the highest, “most desirable” level of professionalism that WSH finds useful

6In other branches of engineering project managers (i.e., project leaders) and developers, the “engineers at
floor level” basically all have the same, normalising education. Hence they are intimately familiar with the
syntax and semantics of their tasks. The problem is in software engineering.

7This “degree” notion is not defined here

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 15

to define. Process improvement, by a development group, is now the improvement of the
development processes such that the group (i.e., the software house) advances from level i to
level i+ j where i, j are positive numbers and i+ j is less than 6. So let us first review WSH’s
notion of CMM.

4.2 The CMM: Capability Maturity Model

The following subsection are “lifted” from http://en.wikipedia.org/wiki/Capability Maturity Model:

1. Level 1, Initial:At maturity level 1, processes are usually ad hoc and the organization
usually does not provide a stable environment. Success in these organizations depends
on the competence and heroics of the people in the organization and not on the use
of proven processes. In spite of this ad hoc, chaotic environment, maturity level 1
organizations often produce products and services that work; however, they frequently
exceed the budget and schedule of their projects.

Maturity level 1 organizations are characterized by a tendency to over commit, abandon
processes in the time of crisis, and not be able to repeat their past successes again.

2. Level 2, Repeatable:At maturity level 2, software development successes are repeat-
able. The organization may use some basic project management to track cost and
schedule.

Process discipline helps ensure that existing practices are retained during times of stress.
When these practices are in place, projects are performed and managed according to
their documented plans.

Project status and the delivery of services are visible to management at defined points
(for example, at major milestones and at the completion of major tasks).

Basic project management processes are established to track cost, schedule, and func-
tionality. The minimum process discipline is in place to repeat earlier successes on
projects with similar applications and scope. There is still a significant risk of exceed-
ing cost and time estimate.

3. Level 3, Defined:The organization’s set of standard processes, which is the basis for
level 3, is established and improved over time. These standard processes are used to
establish consistency across the organization. Projects establish their defined processes
by the organization’s set of standard processes according to tailoring guidelines.

The organization’s management establishes process objectives based on the organiza-
tion’s set of standard processes and ensures that these objectives are appropriately
addressed.

A critical distinction between level 2 and level 3 is the scope of standards, process
descriptions, and procedures. At level 2, the standards, process descriptions, and pro-
cedures may be quite different in each specific instance of the process (for example, on
a particular project). At level 3, the standards, process descriptions, and procedures
for a project are tailored from the organization’s set of standard processes to suit a
particular project or organizational unit.

4. Level 4, Managed:Using precise measurements, management can effectively control
the software development effort. In particular, management can identify ways to adjust

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

16 November 17, 2006 — Dines Bjørner: The Triptych Process Model

and adapt the process to particular projects without measurable losses of quality or
deviations from specifications.

Subprocesses are selected that significantly contribute to overall process performance.
These selected subprocesses are controlled using statistical and other quantitative tech-
niques.

A critical distinction between maturity level 3 and maturity level 4 is the predictability
of process performance. At maturity level 4, the performance of processes is controlled
using statistical and other quantitative techniques, and is quantitatively predictable.
At maturity level 3, processes are only qualitatively predictable.

5. Level 5, Optimizing:

Maturity level 5 focuses on continually improving process performance through both in-
cremental and innovative technological improvements. Quantitative process-improvement
objectives for the organization are established, continually revised to reflect changing
business objectives, and used as criteria in managing process improvement. The effects
of deployed process improvements are measured and evaluated against the quantitative
process-improvement objectives. Both the defined processes and the organization’s set
of standard processes are targets of measurable improvement activities.

Process improvements to address common causes of process variation and measurably
improve the organization’s processes are identified, evaluated, and deployed.

Optimizing processes that are nimble, adaptable and innovative depends on the partici-
pation of an empowered workforce aligned with the business values and objectives of the
organization. The organization’s ability to rapidly respond to changes and opportunities
is enhanced by finding ways to accelerate and share learning.

A critical distinction between maturity level 4 and maturity level 5 is the type of process
variation addressed. At maturity level 4, processes are concerned with addressing special
causes of process variation and providing statistical predictability of the results. Though
processes may produce predictable results, the results may be insufficient to achieve the
established objectives. At maturity level 5, processes are concerned with addressing common
causes of process variation and changing the process (that is, shifting the mean of the process
performance) to improve process performance (while maintaining statistical probability) to
achieve the established quantitative process-improvement objectives.

4.3 Process Models and Processes

One thing is the process model, viz., the graph-like structures shown in, for example, Fig. 4 on
page 7, Figs. 8 on page 11 and 9 on page 12, and Fig. 11 on page 14. (These are syntactic
structures, but have semantic meanings.) Another thing is the actual usage of such models,
that is, the actual processes that the software developers (domain, requirements and software
design engineers) “steer through” when developing domain models, requirements models and
software designs.

4.3.1 Graphs and Graph Traversal Traces

Assume some graph-like, let us call it, process model, see Fig. 12 on the facing page.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 17

D

F

A

B

E

G

H

J

K

L

C

b

a

d
c

e
f

g

h

j

k

m

n

 ... etcetera ... etcetera

Figure 12: A graph (left) and two (incomplete) traversal traces (center and right)

• So Fig. 12 shows a process model and two traces.

– REDOs, that is, iterations of phases, stages and steps lead to additional traces.

∗ Let us call the totality (set) of these traces for OK traces.

– And “jumping” or just “skipping” phases, stages and steps lead to further addi-
tional traces.

∗ Let us call these “jumped” or “skipped” traces for NOK traces.

• A process model thus denotes a possibly infinite set of such traces.

The leftmost part of Fig. 12 shows an acyclic graph. The graph consists of distinctly labeled
nodes and (therefrom distinctly labeled) edges. The center and right side of the figure shows
some possible traversal traces. By a traversal trace we understand a sequence of wavefronts.

By a wavefront we understand a set of node and edge labels such that no two of these are
on the same path from an input (i.e., in-degree 0) to an output (i.e., out-degree 0) node, and
such that there is a contribution to the set from any path from an input to an output node.

The third wave of the two traces shown in the two rightmost figures can thus be represented
by {B, b} and {a,C}.

4.3.2 Process Models and Processes

A process model is here taken to be a graph: boxes denote activities that result in information
and description, prescription or specification documents and edges denote analytic activities
that result in documents that record results of (concept formation, consistency, conflict and
completeness) analysis, verification, model checking, testing and possibly theory formation.

A development process is any trace over sets of these activities.

Figure 12’s center figure thus portrays the following initial trace:

〈{A},{a,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...,etcetera〉

Thus a process model denotes a set of such traces.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

18 November 17, 2006 — Dines Bjørner: The Triptych Process Model

4.3.3 Incomplete and Extraneous Processes

The trace:

〈{A},{a,b},{c,d,b},{D,E,b},{D,E,C},...,etcetera〉

appears to have skipped the activity (phase, stage or step) designated by B. Loosely speaking
we call such processes incomplete with respect to their underlying (i.e., assumed) process
model (Fig. 12 on the preceding page, the leftmost graph).

The trace:

〈{A},{a,z},{X},{D,Y,b},{D,E,C},...,etcetera〉

appears to have performed some activities (z, X, Y) not designated by the process model
of Fig. 12 on the page before (the leftmost graph). Loosely speaking we call such processes
extraneous (or ad hoc) with respect to their underlying process model.

4.3.4 Process Iterations

The trace

〈{A},{a,b},{B,b},{a,b},{B,b},{c,d,b},{B,b},{c,d,b},{D,E,b},{D,E,C},...,etcetera〉

designates an iterated process. After action B in {B,b} the process “goes back” to perform
action b (in {a,b}); and after (either of) actions c or d in {c,d,b} the process “goes back” to
perform action B in {B,b}. Loosely speaking we call such processes iterated with respect to
their underlying process model.

The above trace only shows simple “one step” (or stage or phase) “backward and then
onward” iterations. But the REDO idea, also indicated in Fig. 1 on page 4, can be extended
to any number of steps (etc.).

4.3.5 Degrees of Process Model Compliance

We can now define two notions of process model compliance, a syntactic and a semantic.
The syntactic notion of process model compliance has to do with “the degree” to
which an actual process matches a possibly iterated, i.e., an OK trace of a process model.
The semantic notion of process model compliance is concerned with adherence to the
semantics of boxes and edges.

We shall not, in this paper define these notions precisely — that should be done in a
future paper.

Suffice it to summarise that an ongoing process, i.e., an ongoing software development
project can be assessed wrt. its syntactic and its semantics compliance wrt. its process model.
One can precisely state which activities have been omitted (incompleteness), and which ac-
tivities were extraneous (or ad hoc). 7

We first deal with syntactic compliance, then, in the next section, with semantics compli-
ance.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 19

Software Process Assessment 2 Syntactic Process Compliance: Given
the generic process models diagrammed in Figs. 4 on page 7, 8 on page 11, 9 on
page 12 and 11 on page 14, and given the project-specific software development
graph as exemplified by Fig. 13 on the next page, one can now, in a process claimed
to adhere to these models and graphs quite simply assess whether that actual process
follows those diagrams.

We assume that assessment takes place “regularly”, that is, with a frequency higher than
process wave transitions, that is, nore often than the process evolves through steps and stages.
Otherwise it may be too late (or too cumbersome) to “catch and do” an omitted step.

Software Process Improvement 2 Syntactic Process Compliance: Ad-
herence to the process model can, at least “formally” (wrt.), be improved by actually
ensuring that the process steps and stages (or even phases) that were assessed to not
having been performed, that these be performed.

4.3.6 A “Base 0” for Triptych Developments

By a triptych development we mean a development which applies the principles, techniques
and tools as prescribed by the triptych dogma. Either in a systematic, or in a rigorous, or in a
formal way. A triptych development process therefore, “by definition” has its base

point at level 4 in the CMM scale. This does not mean that a software development
process which claims to follow the triptych dogma (or the software house within which that
process occurs) at least measures at level 4. The dogma sets standards. The process may
follow, or may not follow such standards. Whether they are followed or not is now an “easy”
matter to resolve. The degree to which the dogma, in all its very many instantiations, is
followed is now “fairly easy” to resolve. The “ease” (or “easiness”) depends on how well
developers and management understands the many triptych principles, techniques and tools,
how well they understand the prescribed syntax and semantics of required documents, and on
how well they understand their pragmatics, that is, the reason for these principles, techniques
and tools.

The pragmatics is what makes management interesting. Well mastered pragmatics allows
the managers leeway (i.e., discretion) in the dispatch of their duties, that is, allow them to
skip (or “go light” on) certain activities, including choosing whether a step or even a stage
should be performed “lightly” or more-or-less “severely”, that is, be informal, or formal (and
then in a scale from systematic via rigorous to formal).

Software Process Assessment 3 Planned Syntactic and Semantics Com-

pliance: If a process is assessed (SPA) to be in full compliance, syntactically and
semantically with the process model then we claim that the software development in
this case is at CMM level 4 (or higher).

Software Process Improvement 3 Planned Syntactic and Semantics

Compliance: If it is assessed that a process has not reached CMM level 4, and
that at least CMM level 4 is desired, then one must first secure syntactic compliance,
see process improvement # 2 (Page 19), thereafter ensure that each of the steps (or
stages, or phases) whose semantic compliance was assessed too low be redone and
according to their semantic intents.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

20 November 17, 2006 — Dines Bjørner: The Triptych Process Model

4.4 Proactive Measures

The above spoke in general about assessment and improvement.

We are now ready to deal with more specific issues of process assessment and improvement.
But first we need to refine our notion of process model.

4.4.1 Project Development Graphs

The process models (i.e., the graphs) are generic. They apply to any development — whatever
the software. They must be instantiated to fit the particular problem frame (see [10] as well
as Chap. 28 in Vol. 3 of [7, 8, 9]).

Figure 13 shows the project development graph that was used in the development of the
Danish Ada compiler [11, 12] (1981–1984).

Semantics

Static
Semantics

Dynamic
Semantics

Sequential
Semantics Semantics

Concurrent

Machine

Compiling
Algorithm

Administrator
Multi-pass

Analysis
Semantic

Domain

Requirements
Capture

Software
Architecture

Host Compiler Target System

Run-time
System

Run-time

Design
to

Code
P1 P2 P4 P5 P9Front-end Back-endP6

P:

pass

1

2

5 6

7

8

9

3

4

10

11 12 13

T-code α

β

 γ

Architecture

Theory

45

Figure 13: Project development graph: Compiler development

The top horizontal and dashed line of Fig. 13 separates domain engineering from require-
ments engineering. The domain engineering box (“Semantics”) represents a simplification of
the usual domain engineering process diagram. (You are to put that usual diagram into the
“Semantics” box (a form of supplementation)!) The second horizontal and dashed line of
Fig. 13 separates requirements engineering from software design. (Again you are to supple-
ment the requirements engineering and software design boxes etc. of Fig. 13 with the generic
process models for requirements engineering and software design.)

The software (domain, requirements, software design) development graphs in the sense of
supplementation are orthogonal to process models. They allow more meaningful assignment of
semantics to boxes and edges and they allow more specific management (planning, monitoring
and control).

In this paper we do not show how to construct a resulting pull graph from the combination
of the earlier process models with the later, domain specific graph.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 21

4.4.2 Management

So far, in this paper, we have not dealt with management. Management8 is about planning,
and monitoring and controlling process resource usage — including the quality of the docu-
ments emanating from the use of resources. Planning is about scheduling and rescheduling
processes and allocating and re- and deallocating resources to (from) processes.

A primary resource in software development is the set of domain and requirements en-
gineers and the set of software designers. Other primary resources are the time, space and
tools used by these developers.

Planning — Scheduling and Allocation: Planning starts with instantiating, selecting,
or developing a new, tentative, software development graph and detailing (i.e., annotating) it
wrt. process model concepts: phases (domain, requirements, software design), stages (stake-
holder identification, acquisition, analysis, description (prescription, specification), verifica-
tion, model checking, testing, validation, etc.), and make allowances for more crucial, detailed
steps.

Based on the resulting software development graph management can, in a far more de-
tailed (i.e., granular) way, ascribe resource usage (people, time, offices, equipment, software
development tools) to each box and edge, and can schedule these in time and allocate them
“in space”.

Software Process Assessment 4 Resource Planning: How can one assess
a software development project plan (i.e., graph), that is, something which designates
something yet to happen? Well, one can compare to previous software development
graphs purporting to cover “similar” (if not identical) development problems and
their eventual outcome, that is, the process that resulted from following those graphs.
Based on actual resource useage accounts one can now — “to the best of anyone’s
ability” — draw a software development graph and ascribe resource consumption esti-
mates (time, people, equipment) to each and every node and edge. Thus ‘assessment’
here was “speculated assessment” of an upcoming project.

Thus, if that ‘speculated assessment’ of an upcoming project is felt, by the assessors, i.e., the
management, to be flawed, to be questionable, then one has to proceed to improvement:

Software Process Improvement 4 Resource Planning: One must first
improve the precision with which one designs the domain specific project development
graphs. Then the precision with which we associate resource usage with each box and
edge of such a graph. Etcetera. Some development projects are very much “repeats”
of earlier such projects and one can expect improvement in project development graphs
for each “repeat”. Other projects are very much tentative, explorative, that is, are
actually applied research projects — for which one only knows of a project development
graph at the end of the project, and then that graph is not necessarily a “best such”!

Monitoring & Controlling Resource Usage: As the project (i.e., the process) evolves
management can now check a number of things: adherence to schedule and allocation, and
adherence to the syntactic and the semantic notions of process model compliance.

8We restrict management to the below items. That is: we do not consider product management (which
products to develop and in which sequence of deliverables) nor project funding.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

22 November 17, 2006 — Dines Bjørner: The Triptych Process Model

Most process models do not possess other than rather superficial and then mostly syntactic
notions of compliance. In the triptych process model semantic compliance is at the very core:
Every box and every edge of the process models have precise syntax and semantics of the
documents that are the expected results of these (box and edge) activities.

Software Process Assessment 5 Resource Useage: No problems here.
As each step (of the development process) unfolds one can assess its compliance to
estimated plan.

Should a resource useage assessment reveal that there are problems (for example: all resources
used well before completion of step) then something must be done:

Software Process Improvement 5 Resource Useage: Well, perhaps not
this time around, when all planned resources have already been consumed — no
improvement can undo that — but perhaps “next” time around. An audit may reveal
what the cause of the over-consumption was. Either a näıve, too low resource estimate,
or unqualified staff, or some simple or not so simple mistakes? Improvement now
means: make precautions to avoid a repetition.

Resource usage is at a very detailed and accountable level and can thus be better assessed.
Slips (usually excess usage) can be better foreseen and discovered and more clearly defined
remedies, should milestones be missed or usage exceeded, can then be prescribed — including
skipping stages and steps whose omission are deemed acceptable.

Skipping stages and steps result in complete, perhaps extraneous (ad hoc) processes. Given
that management has an “ideal” process model and hence an understanding of desirable,
possibly iterated processes, management can now better assess which are acceptable slips.

4.4.3 From Informal to Formal Development

By process improvement, to repeat and to enlarge on our previous characterisation of what
is meant by process improvement, we understand something which improves the quality of
resulting software. We “translate” the term ‘resulting software’ into the term ‘resulting doc-
uments’. These documents can — as defined on in Sect. 3.3 (Page 11) — be developed
eitherinformally (without any use of any formalism other than the final programming lan-
guage9), or systematically formal, or rigorously formal or formally formal!

Informal Development: It is an indispensable property of the triptych approach to soft-
ware development that the formalisable steps domain engineering, requirements engineering
and software design be pursued in some systematic via rigorous to formal manner. Hence
the informal aspects of development is restricted to the development of only the informative
documents. Informative documents are usually “developed” by project leaders and managers.
Hence an “upper” level of management is process assessing and possibly prescribing process
improvements to a “lower” level of management!

9Thus we do not consider UML to be a formalism. For a “formalism” to qualify as being properly formal
it must have a precise syntax, the syntax must have a precise semantics, and there must be a congruent proof
system, that is, a set of proof rules such that the semantics satisfy the proof rules.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 23

Software Process Assessment 6 Informal Development of Informative

Documents: We refer to Fig. 2 on page 4. That figure lists the kind of documents
to be carefully developed — and hence assessed. Since no prescribed syntax, let
alone formal semantics can be given for these documents — whose purpose is mainly
pragmatic — assessment is a matter of style. It is easy to write non-sensical, “pat”
informative documents which do not convey any essence, any insight. Assessment
hence has to evaluate: dose a particular, of the many informative documents listed
in Fig. 2 on page 4, really convey, in succinct form, an essence of the project being
initiated?

Software Process Improvement 6 Informal Development of Informa-

tive Documents: If an informative document is assessed to not convey its intended
message succinctly, with necessary pedagogical and didactical “bravour”, then it must
be improved. Only “seasoned”, i.e., experienced managers can do this.

Systematic, Rigorous and Formal Development: The development of domain descrip-
tion, requirements prescription and software design documents as well as the development of
analytic documents (tests, verification, model checking and validation) can be done in a spec-
trum from systematically via rigorously to formally.

Software Process Assessment 7 Staff and Tool Qualification: Given the
syntax and semantics of the specific step — in the process model — of the tasks to be
assessed a (syntax and semantics) a knowledgeable person, a project (task) leader or
a manager, can assess compliance. That assessment is greatly assisted by the software
tools10 that support activities of those tasks: If they can process the documents then
something seems OK. If not, assessment will have to be negative.

There are now two distinct, “extreme” reasons for a failure to meet assessment criteria —
with any actual reason possibly being a combination of these two “extremes”. One is that
the quality of the staff performing the affected tasks is not up to expectations. The other is
that the tools being deployed are not capable of supporting the problem solution task.

Staff Qualification: If the assessment of ‘Systematic, Rigorous and Formal Development of
Specifications and Their Analysis’ is judged negative due to inadequate development decisions
then we suggest the following kind of improvement.

Software Process Improvement 7 Staff Qualification: It is suggested that
improvement, when deemed necessary, takes either of three forms: Either “move” from
a systematic to a rigorous level of development, or from a rigorous to a formal level of
developement when that is possible and redo the task(s) affected. Or educate and train
staff to re-perform the affected task(s) more accurately (while remaining systematic,
rigorous, or formal as the case may be. Or replace affected staff with better educated
and trained staff and redo the task(s) affected. These kinds of improvement decisions
are serious ones.

10These software tools mainly support the use of the main tools, namely the specification languages, their
transformation (or refinement) and their proof systems.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

24 November 17, 2006 — Dines Bjørner: The Triptych Process Model

4.4.4 Tools

There are different categories of tools. Tools can serve management: for the design of software
development graphs (a la Fig. 13 on page 20) and their “fusion” into the appropriate process
model diagrams (a la Fig. 4 on page 7, Fig. 8 on page 11 and 9 on page 12, and Fig. 11 on
page 14) and for the monitoring and control (i.e., assessment and improvement) of the process
with respect to these diagrams. And tools can serve developers: syntactic and semantic
description, prescription and software design tools as well as analytic tools: for testing, model
checking and verification (proof assistance or theorem provers). These tools embody, that is,
represent the formalisms of the textual or diagrammatic notations used — whether Alloy [13],
B [14], CafeOBJ [15, 16, 17], Cas l [18, 19, 20], Duration Calculus [21, 22], LSCs [23, 24, 25],
MSCs [26, 27, 28], Petri Nets [29, 30, 31, 32, 33], RAISE RSL [34, 35, 7, 8, 9], Statecharts
[36, 37, 38, 39, 40], TLA+ [41, 42, 43], VDM-SL [44, 45, 46], or Z [47, 48, 49, 50]. Thus
the formal notations of the above listed thirteen languages, whether textual or diagrammatic,
or combinatons thereof, are tools, as are the software packages that support uses of these
linguistic and analytic means.

Tool Qualification: If assessment of ‘Systematic, Rigorous and Formal Development of
Specifications and Their Analysis’ is judged negative due to inadequate tools then we suggest
the following kind of improvement:

Software Process Improvement 8 Tool Qualification: Better tools must
be selected and applied to the task(s) affected (i.e., judged negatively assessed). These
tools are either intellectual, that is, the specification languages, whether textual or dia-
grammatic, and their refinement and proof systems, or they are the manifest software
tools that support the intellectual tools. These are likewise a serious improvement
decisions.

4.5 Review of Process Assessment and Process Improvement Issues

We have surveyed, somewhat cursorily, a number of software process assessment and software
process improvement issues. We characterise these from a another viewpoint below.

1. Process Model Syntax and Semantics Assessment and Improvement:

We refer to Page 13.

The issue here is whether the management and development staff really understands
and, to a satifactory degree, can handle the triptych process model in all its myriad of
phases, stages and steps, specificationally and analytically, and with all its myriad of
documentation demands. If not, then they cannot be effectively assessed and subjected
to “standard” improvement measures.

This is an assessment (and improvement) issue which precedes proper project start.

2. Syntactic Process Compliance Assessment and Improvement:

We refer to Page 19.

This issue is a “going concern”, that is, an ongoing, effort of regular assessment and
possibly an occassional improvement. It merely concerns whether a mandated step (or

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 25

stage or even phase) of development and its expected production of related documents
has taken or is taking place.

3. Planned Syntactic and Semantics Compliance Assessment and Improvement:

This is an assessment (and improvement) issue which, in a sense, sets a proper framework
for the project: Does management wish to attain at least CMM level 4, or higher or
lower? In that sense it precedes project start while determining the rigour with which
the next assessments and improvements are to be pursued.

4. Resource Planning Assessment and Improvement:

We refer to Page 21.

This item of assessment and improvement takes place at project start and may have to
be repeated when resource consumption exceeds plans. Assessment and improvement
may involve “layers” of project leaders and management.

5. Resource Useage Assessment and Improvement:

We refer to Page 22.

This item of assessment and improvement takes place at regular intervals during an
entire project and involves “layers” of project leaders and management. It may lead to
replanning, see Item 4.

6. Informative Document Assessment and Improvement:

We refer to Page 23.

Informative documents are usually directed at client and software house management
and not at software house software engineers. As such they are often the result of the
combined labour of client and software house management. Assessments take place
while the planned project is being discussed between these partners. Improvements
may then be suggested at such mutual project planning meetings.

7. Staff and Tool Qualification Assessment

We refer to Page 23.

This form of assessment is probably the most crucial aspect of SPA (and hence of SPI).
It strikes at the core of software development. The resources spent in what is being
assessed conventionally represents a very large, a dominating percentage of resource
expenditures.

Thus this complex of “myriads” of process step, stage and phase (document) assessment
must be subject to utmost care.

7. Staff Qualification Improvement:

We refer to Page 23.

The implications of even minor staff improvement actions may be serious: staff well-
being, inavailability of staff, serious delays are just a few. Thus improvement planning
must be subject to utmost care, both technically and socio-economically, but also as
concerne human relations.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

26 November 17, 2006 — Dines Bjørner: The Triptych Process Model

8. Tool Qualification Improvement:

We refer to Page 24.

The implications of even minor tool improvement actions may be serious: serious re-
training or restaffing, serious time delays, and serious hence cost overruns.

4.6 Hindrances to Process Assessment and Improvement

What could be “standard” hindrances to assessment and improvement? And what could be
similar hindrances to actually carrying out projects according to the triptych process model?

4.6.1 Lack of Knowledge of Methodology

Both management and development staff must be intimately familiar with the triptych process
model and its syntactic, semantic and pragmatic implications, its need for from systematic via
rigorous to formal development, its need for the creation, use, maintenance and correlation of
myriads of documents, and its need for assessment and possible improvement. Lack of knowl-
edge of the methodology, ever so sporadically, is a hindrance to proper software development
processes.

4.6.2 Generation Gaps

Classically we see that young candidates join software houses as software engineers, fluent
in the kind of methods: principles, techniques and tools inherent in the triptych approach.
They are eager to use these. But they are usually stifled: their slightly older colleagues as
well as their project leaders and managers do not possess the same skills, or are outright
illiterate wrt. the tripych methods: principles, techniques and tools. Lack of knowledge of
the methodology, across generations of staff, is a hindrance to proper software development
processes — and even a few years (say ten) count as a generation today.

4.6.3 Lack of Tools

Above we pointed out that there we intellectual tools and there were software tools that
support the use of the intellectual tools. Here we mean both.

On one hand, the problem being tackled in a particular software development project may
be such that there are, as of today, year 2006, no obvious or no good intellectual tools (and
a methodological approach, i.e., a process model) for the properly assessable and improvable
pursuit of such a project. On the other hand, even when appropriate intellectual tools are
(and a process model is) available there may not be good manifest, that is, software support
tools available.

Lack of tools is a serious hindrance to proper software development processes.

4.6.4 Lack of Acceptance

By far the most common hindrance to proper software development processes — such as
suggested by the triptych process model — processes that can be properly assessed and for
which a continuum of improvement possibilties exists — is (1) the lack of acceptance of what
is referred to as “formal methods”, and (2) the lack of acceptance of the necessity to do proper
domain modelling before tackling requirements.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 27

This is not the time and place to lament on those “facts”.

5 Conclusion

It is time to conclude.

5.1 Summary

In Sects. 2. and 3 we have overviewed a rather comprehensive process model, the triptych
model which prescribes three development phases: domain engineering, requirements engi-
neering and software design, and which, within these prescribes a number of stages and within
these again a number os steps. Phases, stages and steps may be iterated, and phases, stages
and steps, as well as the transition between them results in documents. We have modelled
process models as acyclic graphs which denote possibly infinite sets of indefinite length traces
of waves, where a wave is a set of nodes and edges of the graph not on the same path from
an input node (of in-degree 0) to an output node (of out-degree 0), but where subsequences
of traces may be repeated (due to process iterations: redoing “previous” tasks).

In Sect. 4 we have then identified a class of seven software process assessment categories
and eight software process improvement categories, all in relation to the syntax and seman-
tics of the triptych process model. Finally we briefly touched upon hindrances to process
assessment and improvement.

5.2 Future

This is the first time the author has related the triptych model of [7, 8, 9] to SPA and
SPI: software process assessment and software process improvement, and hence to CMM,
Watts Humphrey’s Capability Maturity Model. It has been instructive to do so. Clearly,
for actual projects to apply the triptych approach and to carry out the assessments and
improvements suggested in this paper, more clarifying directions must be given. And support
tools developed.

5.3 Software Procurement

5.3.1 Software

By software we shall here mean not just the executable code and some manuals on how to
install, use and possibly repair this code, but also all the documents that emanates from a full
project developing this code. That is, all the documents listed in Fig. 3 on page 6, Figs. 5 on
page 9, 6 on page 10 and 7 on page 11, and in Fig. 10 on page 13.

5.3.2 Procurement

In software procurement it is therefore natural that the procurement includes as large a set
of the documents mentioned in those figures, and that all these documents have passed an
assessment with some positive, CMM level-relatable degree of acceptance.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

28 November 17, 2006 — Dines Bjørner: The Triptych Process Model

6 Laudatio

Congratulations and many happy returns to Kouichi Kishida.

References

[1] Ian Sommerville. Software Engineering.
Addison-Wesley, 6th edition, 1982–2001.

[2] Roger S. Pressman. Software Engineering, A
Practitioner’s Approach. International Edition,
Computer Science Series. McGraw–Hill, 5th
edition, 1981–2001.

[3] Shari Lawrence Pfleeger. Software Engineer-
ing, Theory and Practice. Prentice–Hall, 2nd
edition, 2001.

[4] Carlo Ghezzi, Mehdi Jazayeri, and Dino Man-
drioli. Fundamentals of Software Engineering.
Prentice Hall, 2002. 2nd Edition.

[5] Watts Humphrey. Managing The Software Pro-
cess. Addison-Wesley, 1989. ISBN 0201180952.

[6] Hans van Vliet. Software Engineering: Princi-
ples and Practice. John Wiley & Sons, Ltd.,
Baffins Lane, Chichester, West Sussex PO19
1UD, England, 2000. 2nd Edition.

[7] Dines Bjørner. Software Engineering, Vol. 1:
Abstraction and Modelling. Texts in Theo-
retical Computer Science, the EATCS Series.
Springer, 2006.

[8] Dines Bjørner. Software Engineering, Vol. 2:
Specification of Systems and Languages. Texts
in Theoretical Computer Science, the EATCS
Series. Springer, 2006. Chapters 12–14 are pri-
marily authored by Christian Krog Madsen.

[9] Dines Bjørner. Software Engineering, Vol. 3:
Domains, Requirements and Software Design.
Texts in Theoretical Computer Science, the
EATCS Series. Springer, 2006.

[10] Michael A. Jackson. Problem Frames —
Analyzing and Structuring Software Develop-
ment Problems. ACM Press, Pearson Educa-
tion. Addison–Wesley, Edinburgh Gate, Harlow
CM20 2JE, England, 2001.

[11] D. Bjørner and O. Oest. The DDC Ada Com-
piler Development Project. [51], pages 1–19,
1980.

[12] G.B. Clemmensen and O. Oest. Formal speci-
fication and development of an Ada compiler –

a VDM case study. In Proc. 7th International
Conf. on Software Engineering, 26.-29. March
1984, Orlando, Florida, pages 430–440. IEEE,
1984.

[13] Daniel Jackson. Software Abstractions Logic,
Language, and Analysis. The MIT Press, Cam-
bridge, Mass., USA, April 2006. ISBN 0-262-
10114-9.

[14] Jean-Raymond Abrial. The B Book: Assigning
Programs to Meanings. Tracts in Theoretical
Computer Science. Cambridge University Press,
Cambridge, England, 1996.

[15] K. Futatsugi, A.T. Nakagawa, and T. Tamai,
editors. CAFE: An Industrial–Strength Alge-
braic Formal Method, Sara Burgerhartstraat
25, P.O. Box 211, NL–1000 AE Amsterdam,
The Netherlands, 2000. Elsevier. Proceed-
ings from an April 1998 Symposium, Numazu,
Japan.

[16] Kokichi Futatsugi and Razvan Diaconescu.
CafeOBJ Report The Language, Proof Tech-
niques, and Methodologies for Object-Oriented
Algebraic Specification. AMAST Series in Com-
puting – Vol. 6. World Scientific Publishing
Co. Pte. Ltd., 5 Toh Tuck Link, SINGAPORE
596224. Tel: 65-6466-5775, Fax: 65-6467-
7667, E-mail: wspc@wspc.com.sg, 1998.

[17] Ražvan Diaconescu, Kokichi Futatsugi, and
Kazuhiro Ogata. CafeOBJ: Logical Founda-
tions and Methodology. Computing and In-
formatics, 22(1–2), 2003. This paper is one
of a series: [52, 53, 20, 54, 43, 50] appearing
in a double issue of the same journal: Logics
of Specification Languages — edited by Dines
Bjørner.

[18] Michel Bidoit and Peter D. Mosses. Casl User
Manual. LNCS 2900 (IFIP Series). Springer,
2004. With chapters by T. Mossakowski, D.
Sannella, and A. Tarlecki.

[19] CoFI (The Common Framework Initiative).
Casl Reference Manual, volume 2960 of Lec-
ture Notes in Computer Science (IFIP Series).
Springer–Verlag, 2004.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

Process Assessment and Improvement — Dines Bjørner, November 17, 2006 29

[20] Till Mossakowski, Anne E. Haxthausen, Don
Sanella, and Andzrej Tarlecki. CASL — The
Common Algebraic Specification Language:
Semantics and Proof Theory. Computing and
Informatics, 22(1–2), 2003. This paper is one
of a series: [52, 53, 17, 54, 43, 50] appearing
in a double issue of the same journal: Logics
of Specification Languages — edited by Dines
Bjørner.

[21] Chao Chen Zhou and Michael R. Hansen. Du-
ration Calculus: A Formal Approach to Real-
–time Systems. Monographs in Theoretical
Computer Science. An EATCS Series. Springer-
–Verlag, 2004.

[22] Chao Chen Zhou, Charles Anthony Richar
Hoare, and Anders P. Ravn. A Calculus of Du-
rations. Information Proc. Letters, 40(5), 1992.

[23] Werner Damm and David Harel. LSCs: Breath-
ing life into Message Sequence Charts. For-
mal Methods in System Design, 19:45–80,
2001. Early version appeared as Weizmann In-
stitute Tech. Report CS98-09, April 1998. An
abridged version appeared in Proc. 3rd IFIP
Int. Conf. on Formal Methods for Open Object-
based Distributed Systems (FMOODS’99),
Kluwer, 1999, pp. 293–312.

[24] David Harel and Rami Marelly. Come, Let’s
Play – Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag,
2003.

[25] Jochen Klose and Hartmut Wittke. An au-
tomata based interpretation of Live Sequence
Charts. In T. Margaria and W. Yi, editors,
TACAS 2001, LNCS 2031, pages 512–527.
Springer-Verlag, 2001.

[26] ITU-T. CCITT Recommendation Z.120: Mes-
sage Sequence Chart (MSC), 1992.

[27] ITU-T. ITU-T Recommendation Z.120: Mes-
sage Sequence Chart (MSC), 1996.

[28] ITU-T. ITU-T Recommendation Z.120: Mes-
sage Sequence Chart (MSC), 1999.

[29] Kurt Jensen. Coloured Petri Nets, volume 1:
Basic Concepts (234 pages + xii), Vol. 2: Anal-
ysis Methods (174 pages + x), Vol. 3: Practical
Use (265 pages + xi) of EATCS Monographs
in Theoretical Computer Science. Springer–
Verlag, Heidelberg, 1985, revised and corrected
second version: 1997.

[30] Carl Adam Petri. Kommunikation mit Auto-
maten. Bonn: Institut für Instrumentelle Math-
ematik, Schriften des IIM Nr. 2, 1962.

[31] Wolfgang Reisig. Petri Nets: An Introduction,
volume 4 of EATCS Monographs in Theoretical
Computer Science. Springer Verlag, May 1985.

[32] Wolfang Reisig. A Primer in Petri Net Design.
Springer Verlag, March 1992. 120 pages.

[33] Wolfgang Reisig. Elements of Distributed Al-
gorithms: Modelling and Analysis with Petri
Nets. Springer Verlag, December 1998. xi +
302 pages.

[34] Chris W. George, Peter Haff, Klaus Havelund,
Anne Elisabeth Haxthausen, Robert Milne,
Claus Bendix Nielsen, Søren Prehn, and
Kim Ritter Wagner. The RAISE Specifica-
tion Language. The BCS Practitioner Se-
ries. Prentice-Hall, Hemel Hampstead, Eng-
land, 1992.

[35] Chris W. George, Anne Elisabeth Haxthausen,
Steven Hughes, Robert Milne, Søren Prehn,
and Jan Storbank Pedersen. The RAISE
Method. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England,
1995.

[36] David Harel. Statecharts: A visual formalism
for complex systems. Science of Computer Pro-
gramming, 8(3):231–274, 1987.

[37] David Harel. On visual formalisms. Communi-
cations of the ACM, 33(5), 514–530 1988.

[38] David Harel, Hagi Lachover, Amnon Naa-
mad, Amir Pnueli, Michal Politi, Rivi Sherman,
Aharon Shtull-Trauring, and Mark B. Trakhten-
brot. STATEMATE: A working environment for
the development of complex reactive systems.
Software Engineering, 16(4):403–414, 1990.

[39] David Harel and Amnon Naamad. The STATE-
MATE semantics of Statecharts. ACM Trans-
actions on Software Engineering and Method-
ology (TOSEM), 5(4):293–333, 1996.

[40] David Harel and Eran Gery. Executable object
modeling with Statecharts. IEEE Computer,
30(7):31–42, 1997.

[41] Leslie Lamport. The Temporal Logic of Actions.
Transactions on Programming Languages and
Systems, 16(3):872–923, 1995.

[42] Leslie Lamport. Specifying Systems. Addison–
Wesley, Boston, Mass., USA, 2002.

November 17, 2006, 05:46 c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark

30 November 17, 2006 — Dines Bjørner: The Triptych Process Model

[43] Stephan Merz. On the Logic of TLA+. Com-
puting and Informatics, 22(1–2), 2003. This
paper is one of a series: [52, 53, 17, 20, 54, 50]
appearing in a double issue of the same journal:
Logics of Specification Languages — edited by
Dines Bjørner.

[44] Dines Bjørner and C.B. Jones, editors. The
Vienna Development Method: The Meta-
Language, volume 61 of LNCS. Springer–
Verlag, 1978. This was the first monograph
on Meta-IV. .

[45] Dines Bjørner and C.B. Jones, editors. For-
mal Specification and Software Development.
Prentice-Hall, 1982.

[46] John S. Fitzgerald and Peter Gorm Larsen.
Developing Software using VDM-SL. Cam-
bridge University Press, The Edinburgh Build-
ing, Cambridge CB2 1RU, England, 1997.

[47] J. M. Spivey. Understanding Z: A Specification
Language and its Formal Semantics, volume 3
of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, January
1988.

[48] J. M. Spivey. The Z Notation: A Reference
Manual. Prentice Hall International Series in
Computer Science, 2nd edition, 1992.

[49] J. C. P. Woodcock and J. Davies. Using Z:
Specification, Proof and Refinement. Prentice
Hall International Series in Computer Science,
1996.

[50] Martin C. Henson, Steve Reeves, and
Jonathan P. Bowen. Z Logic and its Conse-
quences. Computing and Informatics, 22(1–
2), 2003. This paper is one of a series:
[52, 53, 17, 20, 54, 43] appearing in a double is-
sue of the same journal: Logics of Specification
Languages — edited by Dines Bjørner.

[51] Dines Bjørner and O. Oest, editors. Towards a
Formal Description of Ada, volume 98 of LNCS.
Springer–Verlag, 1980.

[52] Wolfgang Reisig. The Expressive Power of Ab-
stract State Machines. Computing and Infor-
matics, 22(1–2), 2003. This paper is one of
a series: [53, 17, 20, 54, 43, 50] appearing
in a double issue of the same journal: Logics
of Specification Languages — edited by Dines
Bjørner.

[53] Dominique Cansell and Dominique Méry. Log-
ical Foundations of the B Method. Computing
and Informatics, 22(1–2), 2003. This paper is
one of a series: [52, 17, 20, 54, 43, 50] appear-
ing in a double issue of the same journal: Logics
of Specification Languages — edited by Dines
Bjørner.

[54] Chris W. George and Anne E. Haxthausen.
The Logic of the RAISE Specification Lan-
guage. Computing and Informatics, 22(1–
2), 2003. This paper is one of a series:
[52, 53, 17, 20, 43, 50] appearing in a double is-
sue of the same journal: Logics of Specification
Languages — edited by Dines Bjørner.

c© Dines Bjørner 2006, Fredsvej 11, DK–2840 Holte, Denmark November 17, 2006, 05:46

