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Abstract. The past 20 years has seen significant investments in the theory and 
practice of software architecture. However, architectural deficiencies are 
frequently cited as a key factor in the shortcomings and failures that lead to 
unpredictable delivery of complex operational systems. Here, we consider the 
art and science of software architecture: we explore the current state of software 
architecture, identify key architectural trends and directions in academia and 
industry, and highlight some of the architectural research challenges which need 
to be addressed. The paper proposes an agenda of research activities to be 
carried out by a partnership between academia and industry. While challenges 
exist in many domains, for this paper we draw examples from one area of 
particular concern: safety-critical systems. 
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1   Introduction 

Experience developing software-intensive solutions in many domains leads one to 
conclude that a very significant shift is taking place in delivery of complex software 
systems1. This shift is being driven by several convergent factors, including [1, 2]:  

• End user expectations – End users want information to be available everywhere, 
on demand, with no downtime. 

• Cost to create solutions – To be competitive it is essential that IT organizations 
take advantage of lower labor rates around the world, integrate components from 
a variety of suppliers, and reuse across product lines and solution families.  

• Auditing and Compliance – Increased regulations and oversight are placing 
additional requirements of adoption of well-documented best practices with 
mandated control points and delivered artifacts to aid auditing. 

• Speed of change – The fast pace of business change demands that IT systems can 
be reconfigured quickly as those needs change.  

                                                           
1 We refer to “complex software systems” as a shorthand for “large-scale development and 

support of software-intensive solutions in domains such as defense, aerospace, telecomm- 
unications, banking, insurance, healthcare, retail, etc.”. 
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• Adaptable business platforms – Today’s distributed solutions platforms must 
allow optimization around current business needs, and support reconfiguration as 
those needs change.  

As IT organizations reexamine their IT systems and rethink their practices and 
tools, the subject of systems and software architecture is frequently at the core. In 
fact, we observe more categorically that architecture is pivotal in the development of 
complex software systems; the Royal Academy of Engineering and British Computer 
Society (RAE/BCS) report on Complex IT Systems [3], states that: 

 “Systems architecture is one of the most significant technical factors in ensuring project 
success.” 

Unfortunately, as a central element in a project’s success, the problems too often 
associated with delivery of high quality systems on-time and to budget can also be 
frequently traced to issues of systems and software architecture. As the RAE/BCS 
report identifies:  

“At present, definition of architecture is relatively ad hoc and, whilst there is good practice, 
much more needs to be done to codify, validate and communicate the experience and skills 
of the best systems architects.” 
 

Such concerns raise a number of deep questions concerning the art of software 
architecture as practiced and supported in industry, and the science of software 
architecture as studied and taught in academia. This provides the motivation for our 
paper; to see how to gain benefit by combining industrial experience with academic 
work on software architecture.   

We start by considering the role of software architecture in the software develop- 
ment process then outline what we see as the “state-of-the-practice” in industry/ 
commerce and the “state-of-the-art” in academia. To focus this analysis – we believe 
without loss of generality – we consider the challenges of UK Defence systems, 
including safety-critical systems. We use this analysis to identify a research agenda – to 
strengthen industrial/commercial practice, and to focus academic research.  

2   State-of-the-Practice in Software Engineering 

There is not a “hard” distinction between academic and industrial/commercial 
research in software architecture – in fact, we shall argue that there is a need for 
greater links between academic and commercial endeavors – but there is a discernible 
difference in emphasis. Our aim below is to outline some of the main thrusts in these 
areas –space does not permit a full exposition of ongoing work, and we focus more on 
research relevant to safety critical and embedded systems, as this enables us to 
illustrate some successful industrial-academic collaboration. 

2.1   Academic 

Taken broadly, the academic view has been to try to bring rigor to architectural 
definition – either building new approaches or seeking to “strengthen” techniques 
used in industry. We distinguish here the formal and analytical approaches from those 
more pragmatic approaches which seek more to underpin the development process. 
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2.1.1   Analytical Approaches 
Widely used software architecture description notations such as UML are often 
viewed by academic researchers as having weak semantics; some early work on 
“precise UML” (pUML2), sought to provide a sound semantic basis for the notation. 
In some research programs, the aim was to support analysis of models but in many 
cases it was just an attempt to remove ambiguity. Arguably such work is bound to be 
of limited value as the tools effectively define semantics, and the tools evolve faster 
than the modeling research.  

More recently, the focus has been on defining new notations with better defined 
semantics (see below) or on adapting popular notations to make them analyzable. A 
common approach has been to identify parts, or aspects of notations, which can be 
subjected to formal analysis. Perhaps one of the most common has been to use model 
checking on the state machines in UML see, for example [7], or in StateMate. This 
sub-problem has been chosen as it is amenable to automated analysis, but it still does 
not solve the basic problem of semantic ambiguity3. Further, there is an issue of 
scalability; although model checking is becoming more powerful, there are as yet few 
examples of the being used on (large-scale) real-world problems ([8] is one of the few 
published examples). Perhaps more critically, such approaches do not address the full 
expressive power of notations such as UML. 

In safety critical systems, where there is a strong motivation to verify programs, 
the SPARK notation and toolset [9] has become successful [10]. The tools incorporate 
the long-established principles of program verification by extending a subset of Ada 
with annotations which allow the expression of pre- and post- conditions. The 
SPARK Examiner tool is capable of discharging some “routine” proof obligations, 
e.g. freedom from run-time exceptions, largely automatically, as well as showing 
correctness against the pre- and post- conditions.  

Some work has “lifted” this idea to the architectural level, by defining a state 
machine subset and adding annotations, e.g. on assumptions of rate of change of 
external variables when moving between states [11] (this was done on Stateflow, the 
state machine element of Matlab-Simulink-Stateflow (MSS), which is widely used for 
modeling control systems). Related work also addressed the rest of the MSS notation, 
viz control law diagrams, proposing a variant of WP-calculus which deals with 
differentials (and integrals) as found in control systems [12].  This work has some 
technical merit, but there are problems of scaling it to complex systems – especially in 
the interaction of the state machine and control law elements (there is a “state 
explosion” which hinders automated analysis).  

The above discussion only considers the functional properties of programs. Most 
safety-critical systems are also real-time systems, and it is necessary to be able to 
demonstrate that they meet (specified) timing properties. This involves both 
determining the worst case execution time (WCET) of code fragments, and the overall 
timing properties of the program, which involves analysis of scheduling. There have 
been mature theories for scheduling for some time, and these have been applied to 
real-world systems, e.g. [13].  

                                                           
2 There is still a webpage at www.cs.york.ac.uk/puml/ but the site is now moribund.  
3 Work by Mikk in the late 1990s identified over 100 semantic models of StateMate statecharts.  
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Some time ago, it was possible to determine WECT analytically (formally), by a 
combination of program static analysis and instruction counting. Again this work 
reached a level of maturity which allowed it to be applied on real systems, e.g. [14]. 
Since the mid 1990s, timing analysis has become harder as processors have been 
optimized for the best average case performance, and worst case program timing is 
influenced by the interaction of cache and pipeline with the program data. More 
recently, therefore, research has moved away from pure analytical techniques and is 
using a combination of static and dynamic (testing) techniques. Work at Rapita4 shows 
that it is still possible, however, to produce techniques which are applicable to industrial 
scale problems and which can estimate timing properties at the architectural level. 

In summary, a major thrust of much academic research which can be viewed as being 
at the “architectural level” has been focused on the use of formal, analytical, techniques. 
There have been some successes, both intellectual and practical, but there are also 
significant limitations on the techniques. The formal analysis of functional properties 
has not proven to scale effectively. Model checking techniques are advancing in power 
faster than Moore’s law (i.e. algorithms are improving as well as the processing 
hardware), but dealing with all aspects of large-scale complex control systems remains 
problematic. Approaches to timing properties have been more successful, in impacting 
real-world systems, but to cope with modern processors it has been necessary to move 
away from a purely analytical approach to using a mixture of static and dynamic 
techniques. This must be considered a success, not a failure, but it highlights the 
difficulties of taking analytical approaches to large-scale problems.  

2.1.2   Pragmatic Research 
There is less of a clear-cut distinction between what is industrial research and 
academic research in the more pragmatic areas – indeed there is effective 
collaboration between Universities and industry – and we focus here on those 
developments which are clearly influenced by both an academic and an industrial 
perspective. We consider two aspects of work: that which expands on notations to 
make them more relevant to their application domains, and that which focuses on 
making development processes more rigorous and repeatable.   

Languages such as UML, despite being multi-faceted, do not address all the 
properties of interest for real-time safety critical systems; for example they do not 
express timing properties within the core language. There have been approaches to 
dealing with these limitations for some time, e.g. real-time extension of UML [15], 
but these have not been widely taken up. The reason seems to be mainly that the 
extensions are not sufficiently rich – and thus do not do enough to enable the 
techniques to solve all the problems encountered in practice.  

Some academic work has tried to address this problem by developing wide-
spectrum specification languages, and supporting contracts which enable aspects of 
systems to be specified and built independently, e.g. AIM [16]. Whilst mainly 
pragmatic, this work has also embraced formal analysis of failure properties, a key 
aspect of safety-critical software designs, with a technique known as FPTC [17]. 
Associated work has also considered the use of automated techniques for model 
transformation (we defer such issues to section 3.2 below).  

                                                           
4 See http://www.rapitasystems.com/ 
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Perhaps the most significant aspect of this work has been to influence domain-
specific languages such as the Architecture Analysis and Description Language 
(AADL) which started out as a research program funded by the US Army Avionics 
Command, and which is now an SAE standard5. AADL incorporates contracts and 
notions of fault propagation which are influenced by AIM and FPTC. Whilst AADL 
was originally an “independent” notation it is now available as a UML profile.  

There are many approaches to improving development processes which build on 
architectural representations; we consider two: product line research and test 
automation. 

Many systems, e.g. airplane engines, evolve as product lines, i.e. the features and 
properties of one product bear a strong relationship to those of others in the family – 
and the relationships can be utilized to simplify the design process. Specifically the 
common parts can be represented in the architecture – which also has explicit 
representation of variations (alternatives) and options in the system. These concepts 
have been studied in academia [18], but are also used in industry [19] and are 
supported commercially6.  Further work has considered the process for deriving 
requirements for product lines and architectural flexibility [20] in the context of 
embedded control systems (aircraft engine controllers). Generally work in this area is 
quite mature. It is not as widely adopted as might be expected, but that is largely a 
socio-technical issue, which is outside the scope of this paper.  

Perhaps one of the reasons for limited take-up of such ideas is that the real cost of 
producing critical systems arises from the verification activities, not the development 
activities. If code generation costs, say, 10% of the development cost and verification 
is 50% of the cost, then halving code production time is of little benefit if the 
verification cost is not also reduced. Some tools, e.g. Reactis7, have been developed to 
automate some of the verification tasks when using model-based development, but 
generally these do not consider issues such as product lines. Some research work, e.g. 
[21], has addressed product lines but there remains much more to be done.  

Interestingly, because of the cost of testing, there have been a number of attempts 
to substitute formal analysis for testing. One of the most interesting developments is 
ClawZ which verifies Ada against MSS models [22]. This approach has been used on 
practical applications, e.g. the Eurofighter Typhoon flying control system.  

For these approaches – test automation and formal analysis – there are many 
challenges, including ensuring that the certification authorities accept their validity.  
Again, space does not permit a full treatment of these issues, but [23] indicates one 
way of overcoming these difficulties, by providing a logical argument why the 
techniques proposed are an effective substitute for those mandated by the standards.  

2.1.3   Observations 
The work outlined in the two previous sections can (perhaps simplistically) be 
characterized as “science driven” and “problem driven” (or an engineering approach) 
respectively.  

                                                           
5 See http://www.aadl.info/ 
6 See, for example http://www.biglever.com/index.html 
7 See http://www.reactive-systems.com  
 



242         A.W. Brown and J.A. McDermid 

The “science driven” approaches have potential, but often fall a long way short of 
solving industrial problems. It is likely that this is where radical changes to processes 
will come but the success rate is likely to be low, as the problems of scaling the 
“science” to industrial scale problems are very great, and perhaps need more 
investment than can be found in academic projects.  

The “problem driven” approaches have often involved interaction between 
academia and industry – focusing academic research on issues which cause difficulty 
in practice. Whilst this work may not always produce full solutions it often 
ameliorates the problems, and produces useful incremental improvements to 
processes.  

Both forms of research are needed – see the later discussions for our views on the 
balance.   

2.2   Industrial/Commercial 

Architectural concerns are important to all industrial systems. In any development 
project there is significant focus on the architecture as a central artifact. However, 
practical considerations require efficient techniques and tools that provide clear value 
to the project. All too frequently this leads to shortcuts being taken that have 
consequences on the long term maintenance and evolution of the system. 

Here, we explore several areas of industrial software architecture as practiced 
today, discuss current practices in use, and highlight several key gaps and challenges. 

2.2.1   Architectural Design 
Today, a majority of software developers still take a code-focused approach to 
development, and do not use separately defined abstract (architectural) models at all. 
They rely almost entirely on the code they write, and they express their model of the 
system they are building directly in a third-generation programming language (3GL) 
such as Java, C++, or C# within an Integrated Development Environment (IDE), e.g. 
the IBM Rational Application Developer, Eclipse, or Microsoft VisualStudio. Any 
separate modeling of architectural designs is informal and intuitive, and lives on 
whiteboards, in Microsoft PowerPoint slides, or in the developers’ heads. While this 
may be adequate for individuals and very small teams, this approach makes it difficult 
to understand key characteristics of the system among the details of the 
implementation of the business logic. Furthermore, it becomes much more difficult to 
manage the evolution of these solutions as their scale and complexity increases, as the 
system evolves over time, or when the original members of the design team are not 
directly accessible to the team maintaining the system. 

The UML is the most frequently used language for visualizing static and dynamic 
aspects of software-intensive systems [5]. Users of UML for architectural design are 
supported by well-established methods that offer a set of best practices for creating, 
evolving, and refining models described in UML. One of the most well-known is the 
IBM Rational Unified Process (RUP). The RUP describes a development process that 
helps organizations successfully apply a Model-driven Development (MDD) 
approach [24].  

The UML is one element of a broader initiative aimed at encouraging a model-
driven approach. This is most clearly seen in OMG’s Model Driven Architecture 
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(MDA) approach, a set of technologies intended to provide an open, vendor-neutral 
approach to the challenge of business and technology change [26]. Based upon 
OMG’s established standards such as the Meta-Object Facility (MOF), UML, and 
XMI, the MDA separates business and application logic from underlying platform 
technology. The goal of MDA is to offer a conceptual framework for using models 
and applying transformations between models as part of controlled, efficient software 
development process [27]. Several commercial and open source software products 
claim support for part or all of an MDA approach, and are used in many architectural  
domains most notably in real-time and embedded systems.8 

In spite of these improvements in model-driven development support, many 
developers use the UML notation informally as a way to “sketch” the design of new 
and existing systems [28]. Architectural design can then occur through use of domain-
specific languages (DSLs) that embed many architectural patterns and assumptions 
into the notation and its transformation into a solution specific to the domain. Many 
such DSLs are available focusing on business domains such as banking, automotive, 
and telecommunications systems. 

The approach to creating and applying DSLs has received additional attention 
recently as it is one of the cornerstones of Microsoft’s Software Factories approach 
[29]. A Software Factory is a collection of technologies that introduces product line 
thinking around an application architecture that is defined and refined through domain 
specific languages. Tooling for this approach is part of Microsoft’s latest releases of 
its VisualStudio product line. 

2.2.2   Architectural Analysis 
State-of-the-art transformation techniques used in MDA generally cannot be “steered” 
by dependability issues, and have not been widely applied to architectural models 
with dependability attributes. Integrating MDA with mechanisms for building 
dependable systems requires deep and applied knowledge of dependability as well as 
MDA standards, tools, and techniques.  

Models of enterprise architecture (EA) are rarely used to develop assets used 
downstream. There are several reasons for this. Downstream assets (such as code, 
documentation for review, and deployment models) are difficult to derive from 
models using the current state-of-the-art transformation tools, which are typically 
targeted at single diagrams. An EA model typically provides information spanning 
several meta-models, and most transformation tools are applicable to a single source 
meta-model. Deriving downstream assets from EA models may be more feasible – 
and demonstrably more useful – with mechanisms for integrating different views 
(from different meta-models) – the results of which could then be applied to 
transformation. Another difficulty encountered is dealing with non-functional 
attributes, such as quality-of-service constraints. While mechanisms like the UML 
Quality-of-Service (QoS) profile can help to enrich EA models with QoS and 
dependability characteristics, current generation transformation and integration tools 
must be made aware of these characteristics during the generation and integration 
process. 

                                                           
8 See www.omg.org/mda for more details and examples. 
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Automated architectural analysis techniques often have to be tailored specifically 
to modeling languages and tool infrastructure; moreover, adapting existing analysis 
implementations (e.g., fault and failure analysis, timing analysis) to specific 
architectural modeling languages and tools often requires much repeated work. As a 
result, much of the currently practiced architectural analysis remains informal and 
based on inspection techniques supported by architectural heuristics gathered from 
experiences across several domains. 

2.2.3   Architectural Frameworks 
Support for a consistent approach to software architecture requires a set of guidelines that 
identify the key artifacts to be delivered, and constrains the method by which those 
artifacts are produced. For many organizations, a primary objective is to produce a 
standardized blueprint describing a complex systems architecture so that decision-makers 
can then use this report to compare the architecture of alternative system designs and 
manage the evolution of existing systems. The blueprint must describe a system’s 
architecture well enough to enable detailed analysis, justify procurement to the project’s 
sponsors, and support ongoing management of the in-flight project. 

To assist in this, several organizations have formalized such guidelines in the form 
of a so-called “architectural framework”. These guidelines typically are specialized to 
a specific technology or business domain (e.g., defense systems, or 
telecommunications systems), or else promote specific architectural views of the 
system to highlight particular forms of communication and analysis (e.g., business/IT 
communication, or operational systems management). In the first category we have 
efforts such as the US Department of Defense Architectural Framework (DODAF) 
and the UK Ministry of Defence Architectural Framework (MODAF). In the second 
category we have efforts such as the Zachmann Framework and The Open Group 
Architectural Framework (TOGAF). 

For illustrative purposes, we shall consider MODAF9. The MODAF V1.0 set of 
baseline documentation was published in 2005 [30]. Many of the MOD stakeholders 
have started to adopt MODAF. There have been a number of notable areas of 
successful adoption and several MOD organizations have successfully modeled 
aspects of their architecture using MODAF (e.g., The Director of Equipment 
Capability (DEC) Command, Control and Information Infrastructure (CC&II), The 
DEC Intelligence Surveillance Target Acquisition and Reconnaissance (ISTAR), and 
The Logistics Coherence Information Architecture (LCIA) within the Defence 
Logistics Organisation (DLO10)). In addition, many MoD Invitation to Tender (ITT) 
documents have required MODAF views to be produced as part of the technical 
proposal response. Consequently, a number of the tool vendors have developed 
MODAF specific configurations of their modeling tools, including Salamander, 
Telelogic, Troux Technologies, Artisan Software and IBM. 

However, in spite of this success, the use of architectural frameworks such as 
MODAF is inconsistent and sporadic. For example, MODAF as a standard is not 

                                                           
  9 We believe that to a large degree our experience with other architectural frameworks mirrors 

the status of MODAF. 
10 The MoD has recently been reorganised, and the DLO is now part of Defence Engineering 

and Support (DE&S).  
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completely mature. The MODAF M3 Meta Model is in advance and inconsistent with 
the MODAF Technical Handbook [31]. Further, initial use and adoption of MODAF 
has identified a number of areas that need simplification or clarification. In particular, 
the MODAF Tool Certification Plan [32] needs to be both extended and implemented. 
Most importantly, despite the fact that different MOD stakeholders have started to 
model using MODAF, very little architectural analysis is being performed using these 
models; it is used simply as a documentation approach for architectural designs.  

2.2.4   Architectural Styles 
Much practical work has taken place over the past few years to understand how various 
repeating patterns of development can be understood, categorized, and used as the basis 
for future systems development. As a result, a set of architectural styles has emerged 
that are used by many organizations as the basis for design decisions, and supported by 
vendors in their commercial tools, methods and infrastructure offerings [33, 34]. 

In particular, the need to respond to changing business demands with flexible IT 
solutions has led many businesses to employ Service Oriented Architectures (SOAs).  
SOA is an architectural style aimed at more directly representing business processes 
through choreographed sequences of services realized through reusable components 
[35, 36, 37]. The service design layer (or “service architecture”) is explicitly 
independent of applications and the computing platforms on which they run. 
Solutions are designed as assemblies of services in which the description of the 
assembly is a managed, first-class aspect of the system, and hence amenable to 
analysis, change, and evolution. 

SOAs provide the flexibility to treat elements of business processes and the 
underlying IT infrastructure as secure, standardized components – typically Web 
services – that can be reused and combined to address changing business priorities. 
They enable businesses to address key challenges and pursue significant opportunities 
quickly and efficiently. 

However, as with many such initiatives, the interest in SOA as an architectural 
style has its challenges. While the application of SOA in commercial business 
domains is well advanced, issues around performance, reliability, and predictability of 
such a loosely coupled architectural style remain. Most notably, this is a result of a 
lack of practical architectural design approaches and verification techniques that 
address key system properties such as availability, performance, resource usage, 
timing properties, and so on. Similarly, much of the available commercial 
infrastructure supporting SOA is largely untested in the kinds of demanding contexts 
typical of military systems. Some interesting research has been carried out, leading to 
proof-of-concept demonstrations and prototypes. However, much work remains to see 
this applied more extensively in commercial practice. 

3   A Software Architecture Research Agenda 

The breadth of areas of concern to software architecture is daunting. Hence, to be 
successful, the work in software architecture must focus on key issues which are 
essential to make progress, and directly bridge the academic-to-commercial gap.  
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We propose research in software architecture is organized into three areas: 

• Management. 
• Dependability and Properties. 
• Assembly and Integration. 
 

We briefly discuss each area. To be effective, and to enable technology transition, 
collaborative research between industry and academia needs to produce guidance, 
such as process guides, and handbooks of best practice, which we generically refer to 
as Statements of Best Practice.  

3.1   Management  

Within the area of management, we have identified three research strands. We see 
these strands as ongoing throughout the life of any software architecture program: 

• Acquisition processes. 
• Measurement. 
• Software development processes. 
 

The acquisition strand is intended to address current acquisition practice to 
ascertain where it might be changed to better address the challenges of acquiring 
complex software-intensive equipment, systems and systems-of-systems. This strand 
provides the greatest potential for early impact. Key research issues include: 

• Management of risks and uncertainties associated with the requirements and 
the technical solution. 

• The management of changes to the requirements and / or the technical 
solution. 

• Incremental and evolutionary procurement (closely related to the previous 
items). 

• Through Life Capability Management. 
• Estimation of cost and timescale in relation to earned value and other ROI 

measures. 

In order to take effect, any improved acquisition processes will need to be adopted 
by industry. It is our experience that adoption is difficult to achieve. Accordingly, the 
research effort should be constructed so as to maximize the chances of successful 
adoption. In particular, 

• The research will be focused on areas where the stakeholders agree that there 
is a need for change and is willing to change.  

• Any changes must be matured, through research and pilot studies, before 
being rolled out generally. 

 

A corollary is that researchers must seek to engage with the stakeholders to discuss 
the changes that it is prepared to make; and the research program must be sufficiently 
flexible to absorb the results of that negotiation, which may alter during the life of the 
program.  
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The second priority is measurement: this reflects the importance that we attach to 
taking an evidence-based approach generally. The measurement strand consists of 
several activities involving data gathering from projects n industry. This must: 

• Provide an improved picture of industry practice, as the basis for additional 
research activities. 

• Assist in the identification and assessment of potential improvements to the 
processes used within industry. 

• Assist in monitoring the effect of any such changes in a well-defined 
feedback loop. 

 
In addition, the measurement activities must include research into techniques for 

monitoring project health. This aspect of the research effort will concentrate on 
metrics that are useful to all stakeholders but which are currently under-researched, 
such as metrics related to safety or security. 

The final strand deals with the processes that are used for software development. 
Here, we note  

• The existing literature is very large. It includes: the CMMI, ISO9001:2000 
and TickIT, several methodologies such as RUP, and proprietary processes 
developed within industry.  

• Despite this mountain of advice, many problems on projects arise because of 
the non-application of known good practice. From the RAE/BCS report on 
the challenges of complex IT systems [3]:  

"A significant percentage of IT project failures, perhaps most, could have been 
avoided using techniques we already know how to apply. For shame, we can do 
better than this." 

Accordingly, we see the adoption of good practice itself as the central issue and 
this must be the focus of research. Previous research consists of several studies in the 
business IT sector, in which researchers have studied software teams in action. This 
research must be expanded into other domains, determining which practices are 
readily followed “at the coalface”. The outputs from this strand will consist of 
improved advice regarding the construction of software development procedures 
within industry. 

3.2   Dependability and Properties 

Dependability and properties, especially so-called non-functional requirements 
(NFRs), are cognate issues which need to be treated together in software architecture, 
especially in trade-studies and practical architectural analysis.  

Currently, individual high-integrity systems (HIS) achieve acceptable levels of 
safety, albeit at high cost. In TLCM, the crucial issues for HIS are reducing the 
timescales and costs of procurement and extending capabilities to a full range of 
properties, including other aspects of dependability, e.g. security. In particular, rapid, 
low-overhead, assurance techniques are required to demonstrate that a given HIS 
achieves a specific safety or security level, without the current substantial delays in 
carrying out labor-intensive evaluation processes. The emphasis of new research 
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should focus on automation of assessment – although any such research will need to 
draw on other work to address this issue fully.  

Particular attention of research in this area should be on Systems-of-systems (SoS) 
issues, where the problems are much more open-ended. Approaches to safety and 
security which have been used for HIS don’t scale (or don’t apply) to SoS. For 
example, safety and security assessment normally starts by defining the boundary of 
the system of interest – for SoS the boundary is not known in advance, and may 
change dynamically, especially in open systems. Conditions of use may vary 
dynamically (e.g. the changing topology of ad hoc networks of users communicating 
over different categories of secured links, and changing access rights of those users), 
and the SoS must remain demonstrably safe/secure. This requires new approaches to 
dealing with safety and security, with more emphasis on the dynamic management of 
safety and security issues, i.e. sensing and responding to them at run-time. Further, 
safety and security are not disjoint – for example compromise of a communications 
link to a UAV could lead to an unsafe weapon release; new approaches to integrated 
safety and security analysis are needed.  Also, there is a view that all elements in a 
SoS will require some level of assurance – say SIL 2 in safety terminology; emphasis 
is needed on developing effective assurance techniques for such levels of integrity. 

The scope of the work will be different for the two areas. In HIS, the focus of 
research should be mainly on improving software engineering economics, for 
example by developing and justifying “agile high integrity” processes. For SoS, the 
emphasis of research must be more on identifying means by which dependability can 
be “engineered in” to products, and dependability can be preserved through dynamic 
changes in the membership of the SoS. The boundaries are the genuine systems 
engineering issues, e.g. evaluating the dependability of different system concepts.  

3.3   Assembly and Integration 

To be effective, architectures need to be multi-faceted and concerned with data flow, 
control flow, module decomposition, and properties such as throughput, resilience and 
recovery, and so on. Current architectural design methods are inadequate as they do 
not deal with the range of properties of interest, allow for the prediction of 
implementation properties, and so on. For HIS, the Architecture Analysis and Design 
Language (AADL) and work in the Defense and Aerospace research Partnership 
(DARP) form starting points, but much needs to be done e.g. on analysis and 
prediction of properties, effective interface definition to allow ease of integration, and 
so on. Issues which research needs to address include: 

• Architecture evolution. 
• Assigning values (figures of merit) to architectures to enable trade-offs. 
• Migration of application architectures between computing platforms. 
• Scalability in terms of numbers of nodes, and data volumes. 
• Open and modular systems (especially SoS), including interface definition. 
• Robustness (resilience), recovery and reconfiguration. 
• Definition and control of emergent properties. 
 

In practice, however, existing systems often have a brittle, complex structure that 
does not easily enable a move to the kinds of flexibility required. The IT drivers 
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found by customers for undertaking such a migration include the need for operational 
and systems agility, interoperability, reuse, streamlining architectures and technology 
solutions and leveraging legacy systems and existing capability. 

The emergence of techniques and technologies for service-oriented architectures 
(SOA) are directly aimed at providing a design framework to support this kind of 
flexibility and agility. There remain many research challenges to their widespread use 
in embedded systems. Most notably, this is a result of a lack of practical architectural 
design approaches and verification techniques that address key system properties such 
as availability, performance, resource usage, timing properties, and so on. Similarly, 
much of the available commercial infrastructure supporting SOA is largely untested in 
the kinds of demanding contexts typical of military systems. Some interesting 
research has been carried out, leading to proof-of-concept demonstrations and 
prototypes. However, much additional research work remains.  

Transformation of IT systems of itself will reduce application maintenance and 
operational cost. However, the bottom-up only approach carries the risk that the new 
services will embed old ways of doing business, providing flexible systems, but 
inflexible enterprises. In order for enterprises to become flexible, parallel 
organizational transformation needs to take place and the complementary supporting 
governance embedded. Only in this way can the benefits to Operations can be realized 
(e.g., efficient global footprints, economies of scale, agility - rapid change, regulatory 
compliance and process optimization). 

Integration is concerned with construction of systems from components – whilst 
minimizing risk and surprises. Several research activities would be valuable. The 
concerns are, in many ways, the same as for architecture, but from the viewpoint of 
validating the properties and behavior of the composed system. Issues include: 

• Planning and management of integration, including risk management. 
• Architectural evaluation (determining figures of merit). 
• Testing strategies, especially for SoS which may be configured in an ad hoc 

and dynamic fashion, maximising what can be predicted from the minimum 
of testing. 

• Configuration control, and evaluation and assessment of differing system 
configurations. 

4   Discussion 

We discuss the role of academia and industry in addressing the art and science of 
software architecture. Simply stated, we believe software architecture holds the 
pivotal position in helping: 

• Academia to educate the next generation of architects in software engin- 
eering. 

• Industry to produce more robust, scaleable methods and tools that meet users’ 
needs. 

• Academia and industry to form a closer partnership to advance the state-of-
the-art in software engineering. 
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4.1   What Can Academia Do? 

Software engineers need to understand key aspects of computer science (CS) 
fundamentals – the analogy is with the need for understanding of physics in the 
“physical” engineering disciplines, such as mechanical engineering and electronics. 
Beyond this, they need knowledge and skills in five areas – albeit in different amounts 
depending on their role in a project.11 These are: 

• Architecture 
• Good practice 
• Domain knowledge 
• Management 
• Soft skills 
 

Architecture: Software is an intellectual artifact – producing software is essentially a 
“pure design” activity. Thus the core of what software engineers need to know is how 
to architect software systems, and how to tell good architecture from bad. Often this 
involves understanding the non-functional properties of the architecture – e.g. will it 
perform fast enough to process all the data, will it be secure (against anticipated 
attacks), will it manage hardware failures to preserve system safety, and will it be 
useable by the general public? 

Good Practice: All engineers should use good practice, but this is sadly all too rare in 
software engineering – according to Fred Brooks “in no other discipline is the gulf 
between typical practice and best practice so large” [40]. Further, good practice is not 
static, indeed technology moves apace. However, not all the new technology is useful, 
or stands the test of time. Thus, software engineers need to understand principles so 
they can assimilate new practices and, to some degree, sort out the genuine advances 
from the “mere fads”. 

Domain Knowledge: Software engineers need domain knowledge. Programs have a 
role in the world – either as the control and monitoring element in some embedded 
system, e.g. in an aircraft engine controller, or as a key enabler in a business or 
organization, e.g. providing electronic access to patient health records. Most 
requirements for software systems are incorrect – at least initially. The users or 
procurers do not fully understand what they want, and also don’t write down what is 
“obvious” – at least to them. To defend against this, and to produce something useful 
and useable, software engineers need to understand the application domain to be able 
to validate and complete requirements. It is not normally possible for software 
engineers to gain domain knowledge in many, disparate, areas – there is simply too 
much to understand to be expert in say, car braking system design, and on-line 
reselling. Software may be ubiquitous, but the domain knowledge is not. 

Software engineers must obtain domain knowledge to work effectively – computer 
science knowledge is necessary, but not sufficient, to work in a given domain. An 
automotive software engineer of our acquaintance informs us that he has 20 books on 
his shelf which he uses regularly – 8 of these are sources of domain knowledge, e.g. 
the Diesel Engine Handbook. 
                                                           
11These ideas are inspired by the work of David Parnas [38], and explored in more detail by one 

of the authors [39]. 
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Management: Modern software systems are amongst the most complex artifacts 
produced by man. Developing them requires teams, which need management. The 
RAE/BCS study found that management was a key success factor, but also a major 
problem area, for software projects. Managers need to understand what they are 
managing – otherwise how can they make informed decisions? However they also 
need to understand management skills and techniques. Traditional engineering 
distinguishes repeat design – making something very similar to what was produced 
before – from novel design, i.e. producing something which is largely unprecedented. 
Most software projects involve novel, not repeat, design – thus they undertake work 
for which there is no precedent. Management strategies for dealing with uncertainty, 
such as incremental development, and approaches to software (project) risk 
management are therefore keys to success. Software architecture is a control point for 
managing risk, and a cornerstone of the measures and metrics appropriate for every 
successful software-based management technique. 

Soft Skills: Software engineers may spend much of their day working with computers 
– but they need to talk to customers, other engineers designing the embedding system, 
e.g. an aircraft engine, nurses who might use the medical records system, and so on. 
They need to write manuals, or on-line help, from the users’ perspective not an 
internal (design) perspective. They have to work in teams with other software 
engineers, to ensure that they produce an effective whole. Thus soft skills are crucial 
to project success. Success of a project is frequently predicated on how well an 
architect communicates key qualities and properties of the architecture to the rest of 
the team, and to the broader project stakeholders. 

4.2   What Can Industry Do? 

Industry needs to produce collections of tools and methods that are more readily 
consumable by practicing software engineers. While many valuable technologies are 
available, they need to be more tightly integrated, open to customization, and focused 
on specific domains and architectural styles. 

A collection of tools, practices, guidance, heuristics, and specialized content 
(patterns, frameworks, domain models, etc.) must be assembled to support an 
organization as it designs, develops, deploys, manages, and evolves its solutions. 
Informally we can refer to this as an “architecture-centric workbench”. In practice, we 
can distill certain characteristics in the approaches and capabilities of these 
workbenches. 

As illustrated in Figure 1, such a workbench typically consists of elements in 
several categories. Here, for illustration purposes we focus on a workbench optimized 
for SOA architectural styles of solution in business domains such as insurance and 
banking. The underlying platform for the workbench is a collection of commercial 
tools acquired from one or more vendors, and integrated through standard techniques 
such as shared meta-data, import/export across Application Portability Interfaces 
(APIs), or use of a common plug-in framework such as the Eclipse technology[41]. In 
the case of many IBM customers it is the IBM Rational Software Development 
Platform that provides the core set of technologies [42].  
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Software Development
Platform

Platform for many styles of development
•Role-based tools integrated via Eclipse, etc.
•Includes design, development, testing, deployment, etc.

Solution-Specific Content

Value-added Solution content & assets
•Industry-specific domain models and processes
•Delivery-specific service design content and techniques
•Industry-specific patterns and transforms

SOA-Specific Technologies

Enhancements to support SOA style of development
•Profiles for Software Services
•Method Guidance for SOA
•SOA patterns and assets

Organization-Specific Tools

Custom tools for organizational standards&practices
•Domain-specific tool editors
•Design patterns and tooling support
•UML profile updates
•Recipes, patterns, cheat sheets, transforms, etc

 

Fig. 1. A Workbench for Service-Oriented Solutions 

The core technologies support a wide collection of practices and architectural 
styles. Extension and customization allows this core to be adapted. In particular, 
SOA-specific technologies are applied as encoded in patterns and templates, method 
guides, and profiles for service design that extend the core tooling base. 

Then, solution delivery teams within an organization, or external systems 
integrators and partners, further customize the platform with their own techniques, 
technologies, patterns, transforms, and so on. These are specific to an organization’s 
ways of working, and relevant to their particular business practices and domain. For 
example, IBM Global Business Services has defined a set of proprietary practices to 
provide consistency in the way it delivers services to its clients. It has a collection of 
SOA-based design techniques, such as the Service-Oriented Modeling and 
Architecture (SOMA) method [43], that have been distilled from experiences of 
practitioners on a wide variety of projects. Customized tooling for SOMA has been 
created as an extension to the IBM Rational Software Development Platform 
specifically to support those practitioners by automating many of the SOMA 
techniques. 

Finally, domain content is provided to populate the workbench to improve 
efficiency of delivering solutions, and offer some measure of consistency across 
solutions in the same domain. Typically, the tools are augmented with domain models 
and libraries of common patterns in areas such as retail banking, insurance healthcare, 
and so on. An example of such a domain model is the Insurance Application 
Architecture (IAA), a detailed set of content models for several aspects of insurance 
[44]. 

So this set of technologies, this layering of capabilities, contains tooling, methods, 
and content. It provides organizations with a domain-specific platform that can be 
used to deliver service-oriented solutions specific to their business. With some 
variation, this approach is being used in many organizations to assemble a technology 
platform appropriate for developing, delivering, and evolving service-oriented 
solutions. 
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4.3   What Can Academia/Industry Do Together? 

In practice, by working, together academia and industry can add a significant focus on 
transition into practice, leading to important improvements and up-scaling in the 
skills, processes, and practices in use. This will be supported in appropriate industry 
standards and technologies, and a recognized transition path for promising software 
systems engineering research into relevant programs. 

These objectives will be achieved through a focus on 4 key areas; Advancing key 
technologies, leveraging the community, transitioning into practice, and learning from 
experience. 

 

Transition into
Practice

Advance Key
Technologies

Leverage the
Community

Research

Proof of Concepts
Standards

Education
&

Training

Data Gathering

Market
Analysis

Community
Building

Learn from
Experience

Best Practices  

Fig. 2. Academic/Industrial Collaboration 

Advance Key Technologies:  Identify and advance emerging technologies to address 
significant and pervasive software systems engineering problems, and develop these 
technologies to improve software engineering practices in industry. Work with the 
research community to help create and identify new and improved practices by 
creating cooperative research and development agreements with industry and 
academia prove out new and emerging technologies. 

Leverage the Community: Work closely with the broad software systems enginee- 
ring community to seek out best practice and to raise the quality of acquired and 
delivered software-intensive systems. Work through the global community of 
software systems engineers to amplify the impact of the new and improved practices 
by encouraging and supporting their widespread adoption, with the aim of raising the 
“average” practices much closer to best practices. In addition, this will be supported 
through the packaging and deliver of a variety of education and training courses and 
technology practices based on matured, validated, and documented solutions. 

Transition into Practice: Work with leading-edge software developers and acquirers 
to apply and validate new and improved practices. Assist the stakeholders to address 
specific software systems engineering and acquisition challenges, e.g. clearance of 
critical aircraft systems, by applying these practices. Transition activities will be 
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primarily funded through contracted additional services with a range of different 
stakeholders. 

Learn from Experience: Build a base of empirical data by undertaking studies, 
analysis and surveys aimed at establishing a realistic understanding of the current 
state-of-the-practice for software systems engineering within the systems and 
software supplier community. In addition to the value of this base data to the wider 
software systems engineering community, it will also be used to establish appropriate 
measures for assessing impact of technologies as they transition into practice, and for 
adjusting the research activities undertaken by in response to that feedback. Where 
practical this data will also be used to help compare practices with those in other 
sectors, and to identify opportunities to learn from experience in these other sectors.  

5   Summary and Conclusions 

It is tempting to believe that software development is easy. You gain an understand- 
ding of the problem that needs to be addressed by talking with people familiar with 
that domain, and then design a solution to meet those needs and deploy it in the 
customer’s environment. Unfortunately, complexity and scale get in the way to make 
the task of software development a lot more challenging. 

Software engineers turn to software architecture as a cornerstone for managing 
complexity and scale in software development. An architecture is an abstraction of a 
physical system that allow engineers to reason about that system by ignoring 
extraneous details while focusing on the relevant ones. All forms of engineering rely 
on architectures as essential to understanding complex real world systems. 
Architectures are used in many ways: predicting system qualities, reasoning about 
specific properties when aspects of the system are changed, and communicating key 
system characteristics to its various stakeholders. 

Here, we have considered the current state of software architecture, identified key 
architectural trends and directions in academia and industry, and highlighted some of 
the architectural research challenges which need to be addressed. The paper has 
proposed a detailed agenda of research activities to be carried out by a partnership 
between academia and industry. It is our firm belief that this combination of strengths 
from the two communities will be the basis for future progress in the art and science 
of software architecture. 
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